Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique
-
摘要: 为研究养护龄期和偏高岭土(MK)掺量对地聚合物水泥土孔隙结构和动态力学特性的影响,借助分离式Hopkinson压杆(SHPB)试验系统开展了地聚合物水泥土动态单轴冲击压缩试验,并结合核磁共振(NMR)和扫描电镜(SEM)等分析手段研究了地聚合物水泥土的孔径分布和微观形貌变化特征。结果表明:地聚合物水泥土的动态抗压强度随MK掺量的增加呈现先增大后减小的变化趋势,在MK掺量为2%时出现峰值;其动态抗压强度在7~14 d内增长较缓;地聚合物水泥土的T2 分布曲线呈双峰型,以主峰所占面积为主,掺2%的MK能够有效改善孔隙分布,促进小孔隙向微孔隙转化;随着孔隙率的增加,地聚合物水泥土的动态抗压强度呈指数下降;MK掺量为2%时,地聚合物水泥土内部孔隙大幅度降低,水化产生的胶凝材料能够起到填充孔隙和连接土颗粒的作用。Abstract: To study the effects of curing age and metakaolin (MK) content on its pore structure and dynamic mechanical properties, the dynamic uniaxial impact compression tests on the geopolymer cement soil are carried out with the help of the split Hopkinson pressure bar (SHPB) system, in addition, its pore size distribution and microstructure characteristics are studied by combining the nuclear magnetic resonance (NMR) and scanning electron microscope (SEM) analytical methods. The results indicate that with the increase of MK content, the dynamic compressive strength of the geopolymer cement soil exhibits a trend of first increase and then decrease, and the peak value appeares at 2% MK content. Moreover, its dynamic compressive strength increases slowly in the period of 7~14 curing days. The T2 distribution curves of the geopolymer cement soil present bimodal characteristics, and the main peak accounts for large proportion. The incorporation of 2% MK can effectively improve the pore distribution and promote the conversion of small pores to micro pores. With the increase of porosity, the dynamic compressive strength of the geopolymer cement soil decreases exponentially. When the MK content is 2%, the internal pores of the geopolymer cement soil are greatly reduced, and the cementitious material produced by hydration can fill pores and connect soil particles.
-
-
表 1 重塑土颗粒级配
Table 1 Particle size distribution of remoulded soil
粒径/mm 0~0.075 0.075~0.425 0.425~0.63 0.63~1.25 1.25~2.00 占比/% 56.2 27.1 8.35 5.23 3.12 表 2 不同试验条件下地聚合物水泥土T2双峰面积
Table 2 Areas of T2 bimodal peaks of geopolymer cement soil under different test conditions
MK掺量 波峰类型 1 d 3 d 7 d 14 d 28 d 面积 占比/% 面积 占比/% 面积 占比/% 面积 占比/% 面积 占比/% 0% P1 3296 97.49 3175 97.78 3142 97.67 3117 98.01 2992 98.36 P2 85 2.51 72 2.22 75 2.33 63 1.99 50 1.64 2% P1 3056 98.04 3037 98.03 2989 98.14 2972 98.05 2744 98.98 P2 61 1.96 61 1.97 60 1.96 59 1.95 32 1.13 4% P1 3327 97.59 3237 97.59 3237 97.65 3222 98.02 3118 98.05 P2 82 2.41 80 2.41 78 2.35 65 1.98 62 1.95 6% P1 — — — — — — 3370 96.81 3443 97.05 P2 111 3.19 105 2.95 -
[1] 刘勇, 李福豪, 陈健, 等. 深层搅拌水泥土基底加固层的三维随机有限元分析[J]. 岩土工程学报, 2018, 40(8): 1542-1548. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808025.htm LIU Yong, LI Fu-hao, CHEN Jian, et al. Three-dimensional random finite element analysis of cement-admixed soil slab for stabilization of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1542-1548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808025.htm
[2] 王菲, 沈征涛, 王海玲. 水泥固化/稳定化场地污染土的效果分析[J]. 岩土工程学报, 2018, 40(3): 540-545. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803022.htm WANG Fei, SHEN Zheng-tao, WANG Hai-ling. Performances of cement-stabilised/solidified contaminated site soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 540-545. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803022.htm
[3] DENG Y F, YUE X B, LIU S Y, et al. Hydraulic conductivity of cement-stabilized marine clay with metakaolin and its correlation with pore size distribution[J]. Engineering Geology, 2015, 193: 146-152. doi: 10.1016/j.enggeo.2015.04.018
[4] WANG L H, LI X Y, CHENG Y, et al. Effects of coal-bearing metakaolin on the compressive strength and permeability of cemented silty soil and mechanisms[J]. Construction and Building Materials, 2018, 186: 174-181. doi: 10.1016/j.conbuildmat.2018.07.057
[5] 徐菲, 蔡跃波, 钱文勋, 等. 脂肪族离子固化剂改性水泥土的机理研究[J]. 岩土工程学报, 2019, 41(9): 1679-1687. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909013.htm XU Fei, CAI Yue-bo, QIAN Wen-xun, et al. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909013.htm
[6] 罗新春, 汪长安. 矿渣基地质聚合物多孔材料的制备与性能[J]. 硅酸盐学报, 2016, 44(3): 450-456. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201603018.htm LUO Xin-chun, WANG Chang-an. Preparation and properties of slag-based geopolymer porous materials[J]. Journal of the Chinese Ceramic Society, 2016, 44(3): 450-456. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201603018.htm
[7] 崔潮, 彭晖, 刘扬, 等. 矿渣掺量及激发剂模数对偏高岭土基地聚物常温固化的影响[J]. 建筑材料学报, 2017, 20(4): 535-542. doi: 10.3969/j.issn.1007-9629.2017.04.008 CUI Chao, PENG Hui, LIU Yang, et al. Influence of GGBFS content and activator modulus on curing of metakaolin based geopolymer at ambient temperature[J]. Journal of Building Materials, 2017, 20(4): 535-542. (in Chinese) doi: 10.3969/j.issn.1007-9629.2017.04.008
[8] 邓永锋, 吴子龙, 刘松玉, 等. 地聚合物对水泥固化土强度的影响及其机理分析[J]. 岩土工程学报, 2016, 38(3): 446-453. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603010.htm DENG Yong-feng, WU Zi-long, LIU Song-yu, et al. Influence of geopolymer on strength of cement-stabilized soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 446-453. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603010.htm
[9] WU Z L, DENG Y F, LIU S Y, et al. Strength and micro-structure evolution of compacted soils modifified by admixtures of cement and metakaolin[J]. Applied Clay Science, 2016(127/128): 44-51.
[10] 高常辉, 马芹永. 水泥砂浆固化粉质黏土分离式Hopkinson压杆试验与分析[J]. 复合材料学报, 2018, 35(6): 1629-1635. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201806033.htm GAO Chang-hui, MA Qin-yong. Analysis of silty clay stabilized by cement mortar based on split Hopkinson pressure bar experiment[J]. Acta Materiae Compositae Sinica, 2018, 35(6): 1629-1635.(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201806033.htm
[11] MA Q Y, GAO C H. Effect of basalt fiber on the dynamic mechanical properties of cement-soil in SHPB test[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018185.
[12] 土工试验方法标准:GB50123—2019[S]. 2019. Standard for Geotechnical Testing Method: GB50123—2019[S]. 2019. (in Chinese)
[13] 洪宏, 马芹永, 高常辉, 等. 地聚合物水泥土最佳拌合方法的试验与探讨[J]. 安徽理工大学学报(自然科学版), 2018, 38(6): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-HLGB201806011.htm HONG Hong, MA Qin-yong, GAO Chang-hui, et al. Experiment with the optimal mixing methods of geopolymer cement soil and its analysis[J]. Journal of Anhui University of Science and Technology (Natural Science), 2018, 38(6): 59-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLGB201806011.htm
[14] MA Q Y, CAO Z M. Experimental study on fractal characteristics and energy dissipation of stabilized soil based on SHPB test[J]. Journal of Materials in Civil Engineering, 2019, 31(11): 04019264.
[15] 建筑地基处理技术规范:JGJ79—2012[S]. 2012. Technical Code for Ground Treatment of Buildings: JGJ79—2012[S]. 2012. (in Chinese)
[16] 陶高梁, 陈银, 袁波, 等. 基于NMR技术及分形理论预测SWRC[J]. 岩土工程学报, 2018, 40(8): 1466-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808014.htm TAO Gao-liang, CHEN Yin, YUAN Bo, et al. Predicting soil-water retention curve based on NMR technology and fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1466-1472. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808014.htm
[17] HOPRIBULSUK S, RACHAN R, RAKSACHON Y. Role of fly ash on strength and microstructure development in blended concrete stabilized silty clay[J]. Soil and Foundations, 2009, 49(1): 85-98.
[18] 查甫生, 刘晶晶, 许龙, 等. 水泥−粉煤灰固化/稳定重金属污染土的电阻率特性试验研究[J]. 岩土力学, 2019, 40(12): 4573-4580. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912003.htm ZHA Fu-sheng, LIU Jing-jing, XU Long, et al. Electrical resistivity of heavy metal contaminated soils solidified/stabilized with cement-fly ash[J]. Rock and Soil Mechanics, 2019, 40(12): 4573-4580. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912003.htm
-
期刊类型引用(1)
1. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 . 百度学术
其他类型引用(9)