• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

稳定安全系数计算公式中荷载与抗力错位影响探讨

付文光, 陈双, 王振威

付文光, 陈双, 王振威. 稳定安全系数计算公式中荷载与抗力错位影响探讨[J]. 岩土工程学报, 2021, 43(3): 556-563. DOI: 10.11779/CJGE202103019
引用本文: 付文光, 陈双, 王振威. 稳定安全系数计算公式中荷载与抗力错位影响探讨[J]. 岩土工程学报, 2021, 43(3): 556-563. DOI: 10.11779/CJGE202103019
FU Wen-guang, CHEN Shuang, WANG Zhen-wei. Discussion of dislocation phenomena of resistance and load in formula for stability safety factor[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 556-563. DOI: 10.11779/CJGE202103019
Citation: FU Wen-guang, CHEN Shuang, WANG Zhen-wei. Discussion of dislocation phenomena of resistance and load in formula for stability safety factor[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 556-563. DOI: 10.11779/CJGE202103019

稳定安全系数计算公式中荷载与抗力错位影响探讨  English Version

基金项目: 

深圳市科技创新委员会科技研发资金项目 JSGG20180504170317195

详细信息
    作者简介:

    付文光(1970— ),男,广东深圳人,教授级高级工程师,主要从事岩土工程设计咨询、工程实践、试验研究等工作。E-mail:zgjy1992@126.com

  • 中图分类号: TU470

Discussion of dislocation phenomena of resistance and load in formula for stability safety factor

  • 摘要: 岩土结构稳定安全系数应为抗力之和除以荷载之和。国内外相关标准中稳定安全系数计算公式存在着5类抗力与荷载错位、不符合安全系数定义现象:①条分法部分条块产生的抗滑力被计入了分母,如果与滑动力相减则形成第1类错位现象,相加则产生第2类;锚杆抗力切向分量被放在了分母中与滑动力相减亦形成第1类;②把水压力等荷载放在了分子与抗力相减,产生了第3类错位现象;第3类分别与第1,2类作用叠加,产生了第4,5类错位现象;③第1类与第3类造成安全系数计算结果虚高,导致工程有时安全储备不足;第2类造成安全系数虚低,可能会导致较大浪费;第4,5类加大了公式计算结果的不确定性,其中第4类会进一步造成安全系数虚高;④这些错位的计算公式可修正并概化为一个统一公式。
    Abstract: The stability safety factor of geotechnical structure shall be the sum of resistance divided by the sum of loads. There are five kinds of dislocation phenomena between resistance and load in the formula for calculating the stability safety factor in the worldwide relevant standards, and they are inconsistent with the definition of safety factor. (1) The anti-sliding force produced by some soil strips in the slice method is included in the denominator, and the first type of dislocation will be formed if it minuses the sliding force. The second type of dislocation will be formed if it pluses the sliding force. If the tangential component of anchor resistance is placed in the denominator to minus the sliding force, the first type of dislocation will be formed as well. (2) The third type of dislocation will be formed if water pressures and other pressures are placed in the numerator and subtracted from the resistance, and when the third type works together with the first and second types respectively, they result in the fourth and fifth types. (3) The first and third types result in a virtual height of safety factor calculation, which leads to insufficient safety in engineering sometimes. The second type results in a virtual lower safety factor, which may lead to great waste. The fourth and fifth types increase the uncertainty of calculated results, and the fourth kind will further cause the virtual height of safety factor. (4) These dislocated formulas can be modified and generalized into a unified formula.
  • 图  1   条分法边坡稳定分析简图

    Figure  1.   Slope stability analysis by slice method

    图  2   不平衡推力法边坡稳定分析简图

    Figure  2.   Slope stability analysis by unbalanced thrust method

    图  3   条分法整体稳定分析的各种应用

    Figure  3.   Various applications of slice method

    图  4   边坡锚固条分法稳定分析简图

    Figure  4.   Anchorage slope stability analysis by slice method

    图  5   基坑锚固条分法稳定分析简图

    Figure  5.   Stability analysis of anchorage foundation pits by slice method

    图  6   边坡锚固斜面法稳定分析简图

    Figure  6.   Stability analysis of anchorage slopes by plane method

    图  7   基础锚固稳定分析简图

    Figure  7.   Stability analysis of anchorage foundations

    图  8   危岩体锚固稳定分析简图

    Figure  8.   Stability analysis of anchorage unstable rock masses

    图  9   挡墙抗水平滑移稳定分析简图

    Figure  9.   Stability analysis of retaining walls against horizontal sliding

    图  10   边坡斜面滑移稳定分析简图

    Figure  10.   Slope stability analysis by plane method

    图  11   锚固结构Kranz法稳定分析简图

    Figure  11.   Stability analysis of anchorage structures by Kranz method

    图  12   抗浮锚杆整体稳定分析简图

    Figure  12.   Overall stability analysis of anti-floating anchors

    图  13    m=0.7时K0,K1δ1n的变化

    Figure  13.   Variation of K0, K1 and δ1 with n while m = 0.7

    图  14    K1=1.30时K0n的变化

    Figure  14.   Variation of K0 with n while K1 = 1.30

    图  15    m=0.7时K0,K2δ2n的变化

    Figure  15.   Variation of K0, K2 and δ2 with n while m = 0.7

    图  16    K2=1.30时K0n的变化

    Figure  16.   Variation of K0 with n while K2 = 1.30

    图  17    K0=1.30时K2n的变化

    Figure  17.   Variation of K2 with n while K0 =1.30

    图  18   平静水面稳定分析简图

    Figure  18.   Diagram of stability analysis of calm water surface

    图  19    m=0.7时K0,K3δ3n的变化

    Figure  19.   Variation of K0, K3 and δ3 with n while m = 0.7

    图  20   K3=1.30时K0n的变化

    Figure  20.   Variation of K0 with n while K3 = 1.30

    表  1   K1=1.30时K0δ1n的变化

    Table  1   Variation of K0 and δ1 with n while K1 = 1.30

    n00.10.20.30.40.50.60.70.80.90.993.5
    K01.301.271.241.221.201.181.171.161.151.141.131.05
    δ1/%0357910111213141523
    下载: 导出CSV

    表  2    K2=1.30时K0δ1n的变化

    Table  2   Variation of K0 and δ1 with n while K2 = 1.30

    n00.050.10.150.20.250.30.350.40.450.5
    K01.301.461.651.862.102.402.763.243.784.575.55
    δ2/%0-11-21-30-38-46-53-60-66-72-77
    下载: 导出CSV

    表  3   K3=1.30时K0δ3n的变化

    Table  3   Variation of K0 and δ3 with n while K3 = 1.30

    n00.10.20.30.40.50.60.70.80.90.99
    K01.301.271.231.191.161.131.101.081.051.021.00
    δ3/%036912151821242730
    下载: 导出CSV

    表  4   K4及K0随n的变化

    Table  4   Variation of K4 and K0 with n

    n00.10.20.30.40.50.60.70.80.90.99
    K41.301.341.401.471.571.701.902.232.904.9040.9
    K01.301.281.261.251.241.231.231.221.221.221.21
    下载: 导出CSV
  • [1] 建筑结构可靠度设计统一标准:GB 50068—2018[S]. 2018.

    Unified Standard for Reliability Design of Building Structures: GB 50068—2018[S]. 2018. (in Chinese)

    [2] 工程结构可靠性设计统一标准:GB 50153—2008[S]. 2008.

    Unified Standard for Reliability Design of Engineering Structures: GB 50153—2008[S]. 2008. (in Chinese)

    [3]

    GEOFFREY G. Meyerhof. Development of geotechnical limit state design[J]. Canadian Geotechnical Journal, 1995, 32(1): 128-136. doi: 10.1139/t95-010

    [4] 建筑边坡工程技术规范:GB 50330—2013[S]. 2013.

    Technical Code for Building Slope Engineering: GB50330—2013[S]. 2013. (in Chinese).

    [5] 岩土锚杆与喷射混凝土支护工程技术规范:GB 50086—2015[S]. 2015.

    Technical Code for Engineering of Ground Anchorages and Shotcrete Support: GB50086—2015[S]. 2015. (in Chinese).

    [6] 建筑基坑支护技术规程:JGJ 120—2012[S]. 2012.

    Technical Specification for Retaining and Protection of Building Foundation Excavations: JGJ 120—2012[S]. 2012. (in Chinese)

    [7]

    LAZARTE C A, ROBINSON H, GÓMEZ J E, et al. Soil Nail Walls Reference Manual: FHWA-NHI-14-007[M]. Woodbury: Ryan R Berg & Associates, Inc, 2015

    [8]

    Code of Practice for Strengthered/Reinforced Soils Part 2: BS 8006—2:2011[S]. 2011.

    [9] 建筑地基基础设计规范:GB 50007—2011[S]. 2011.

    Code for Design of Building Foundation: GB 50007—2011[S]. 2011. (in Chinese)

    [10] 高压喷射扩大头锚杆技术规程:JGJ/T 282—2012[S]. 2012.

    Technical Specification for Underreamed Anchor by Jet Grouting: JGJ/T 282—2012[S]. 2012. (in Chinese)

    [11] 公路加筋土工程规范:JTJ 015—91[S]. 1999.

    Specification for Design of Highway Reinvorced Eeath Engineering: JTJ 015—91[S]. 1999. (in Chinese)

    [12] 郑颖人, 陈祖煜, 王恭先, 等. 边坡与滑坡工程治理[M]. 2版. 北京: 人民交通出版社, 2010.

    ZHENG Ying-ren, CHEN Zu-yu, WANG Gong-xian, et al. Engineering Treatment of Slope & Landslide[M]. 2nd ed. Beijing: China Communication Press, 2010. (in Chinese)

图(20)  /  表(4)
计量
  • 文章访问数:  433
  • HTML全文浏览量:  77
  • PDF下载量:  555
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-14
  • 网络出版日期:  2022-12-04
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回