Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

三轴应力路径下珊瑚砂的颗粒破碎模型

王兆南, 王刚, 叶沁果, 殷浩

王兆南, 王刚, 叶沁果, 殷浩. 三轴应力路径下珊瑚砂的颗粒破碎模型[J]. 岩土工程学报, 2021, 43(3): 540-546. DOI: 10.11779/CJGE202103017
引用本文: 王兆南, 王刚, 叶沁果, 殷浩. 三轴应力路径下珊瑚砂的颗粒破碎模型[J]. 岩土工程学报, 2021, 43(3): 540-546. DOI: 10.11779/CJGE202103017
WANG Zhao-nan, WANG Gang, YE Qin-guo, YIN Hao. Particle breakage model for coral sand under triaxial compression stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 540-546. DOI: 10.11779/CJGE202103017
Citation: WANG Zhao-nan, WANG Gang, YE Qin-guo, YIN Hao. Particle breakage model for coral sand under triaxial compression stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 540-546. DOI: 10.11779/CJGE202103017

三轴应力路径下珊瑚砂的颗粒破碎模型  English Version

基金项目: 

国家自然科学基金项目 51679016

重庆市研究生科研创新项目 CYB20032

详细信息
    作者简介:

    王兆南(1994— ),男,博士研究生,主要从事岩土工程数值计算方面的研究工作。E-mail:znwang@cqu.edu.cn

    通讯作者:

    王刚, E-mail: cewanggang@163.com

  • 中图分类号: TU431

Particle breakage model for coral sand under triaxial compression stress paths

  • 摘要: 基于不同轴向应变下平行试样的三轴试验结果,分析了珊瑚砂在三轴排水与不排水条件下颗粒破碎随加载的演化过程,探讨了现有的颗粒破碎能量模型和基于应力的Hardin破碎模型的局限性。为了更好地分析颗粒破碎中间发展过程的特征,将引起颗粒破碎的机制分解为压缩和剪切两部分,并分别建立了与之相对应的破碎模型。压缩机制是指在等应力比条件下有效球应力增大导致的压缩效应,它所引起的颗粒破碎与当前的应力状态有关。剪切机制是指剪应力比变化所导致的剪切效应,它所引起的颗粒破碎与已经累积的颗粒破碎量以及剪应变的大小有关。最后,通过与珊瑚砂三轴试验结果的比对初步验证了压缩和剪切破碎模型的合理性。
    Abstract: Based on the triaxial experimental results of parallel specimens loaded under various axial strains, the intermediate particle breakage process of a coral sand is investigated, and the limitations of the energy-based breakage correlation and the popular stress-based Hardin breakage model are discussed. In order to reveal the characteristics of its intermediate accumulating process more conveniently, the particle breakage is decomposed into two parts based on the loading mechanisms: (1) compression-induced particle breakage associated with the increase of mean effective stress, and (2) shear-induced particle breakage related to the change of shear stress ratio. The amount of compression-induced particle breakage can be correlated to the current stress state. The accumulating rate of shear-induced particle breakage depends on both the shear strain and the accumulated amount of particle breakage during the past stress history. Two mathematical models are presented for the two particle breakage parts respectively, and the effectiveness of the two models is demonstrated by simulating the triaxial test results of the coral sand.
  • 图  1   相对破碎的定义

    Figure  1.   Definition of relative breakage

    图  2   珊瑚砂在三轴排水、不排水加载下的试验结果

    Figure  2.   Experimental results of carbonate sand under drained and undrained triaxial compression

    图  3   排水与不排水路径下相对破碎随轴向应变的演化过程

    Figure  3.   Evolution process of particle breakage with axial strain under drained and undrained compression

    图  4   相对破碎与输入能量的关系

    Figure  4.   Relationship between relative breakage and input energy

    图  5   Hardin破碎模型在三轴排水和不排水条件下的模拟结果

    Figure  5.   Performance of Hardin’s breakage model under drained and undrained triaxial compressions

    图  6   恒定破碎应力对应的破碎面

    Figure  6.   Crushing surface corresponding to constant breakage stress

    图  7   压缩机制引起的颗粒破碎

    Figure  7.   Particle breakage induced by compression mechanism

    图  8   排水条件下剪切机制引起的颗粒破碎

    Figure  8.   Particle breakage induced by shear mechanism under drained triaxial compression

    图  9   不排水条件下剪切机制引起的颗粒破碎

    Figure  9.   Particle breakage induced by shear mechanism under undrained triaxial compression

    表  1   压缩和剪切破碎模型的相关参数

    Table  1   Parameters of compression and shear breakage law

    b1c1c2A¯¯Br最终级配曲线
    2.5×10-60.071.255.01.00Hardin的破碎潜能
    34.00.72分形级配
    下载: 导出CSV
  • [1] 邹德高, 田继荣, 刘京茂, 等. 堆石料三维形状量化及其对颗粒破碎的影响[J]. 岩土力学, 2018, 39(10): 27-32. doi: 10.16285/j.rsm.2017.0259

    ZOU De-gao, TIAN Ji-rong, LIU Jing-mao, et al. Three-dimensional shape of rockfill material and its influence on particle breakage[J]. Rock and Soil Mechanics, 2018, 39(10): 27-32. (in Chinese) doi: 10.16285/j.rsm.2017.0259

    [2] 王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm

    WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of coral sand under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm

    [3] 纪文栋, 张宇亭, 王洋, 等. 循环单剪下珊瑚钙质砂和普通硅质砂剪切特性对比研究[J]. 岩土力学, 2018, 39(增刊1): 291-297. doi: 10.16285/j.rsm.2018.0580

    JI Wen-dong, ZHANG Yu-ting, WANG Yang, et al. Comparative study on shear characteristics of coral calcareous sand and ordinary siliceous sand under cyclic single shear[J]. Rock and Soil Mechanics, 2018, 39(S1): 291-297. (in Chinese) doi: 10.16285/j.rsm.2018.0580

    [4]

    WOOD D M, MAEDA K. Changing grading of soil: effect on critical states[J]. Acta Geotechnica, 2008, 3(1): 3-14. doi: 10.1007/s11440-007-0041-0

    [5] 张家铭, 蒋国盛, 汪稔. 颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J]. 岩土力学, 2009, 30(7): 2043-2048. doi: 10.3969/j.issn.1000-7598.2009.07.029

    ZHANG Jia-ming, JIANG Guo-sheng, WANG Ren. Research on influences of particle breakage and dilatancy on shear strength of calcareous sands[J]. Rock and Soil Mechanics, 2009, 30(7): 2043-2048. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.07.029

    [6]

    INDRARATNAB , SALIM W. Modelling of particle breakage of coarseaggregates incorporating strength and dilatancy[J]. Geotechnical Engineering, 2002, 155(4): 243-252.

    [7] 王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5): 802-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm

    WANG Gang, YE Qin-guo, ZHA Jing-jing. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fills[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm

    [8]

    BONO J P D, MCDOWELL G R. Discrete element modelling of one-dimensional compression of cemented sand[J]. Granular Matter, 2014, 16(1): 79-90. doi: 10.1007/s10035-013-0466-0

    [9]

    CIANTIA M O, ARROYO M, O'SULLIVAN C, et al. Grading evolution and critical state in a discrete numerical model of Fontainebleau sand[J]. Géotechnique, 2019, 69(1): 1-15. doi: 10.1680/jgeot.17.P.023

    [10]

    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)

    [11]

    KIKUMOTOM , WOODDM , RUSSELLA . Particle crushing and deformation behavior[J]. Soils and Foundations, 2010, 50(4): 547-563. doi: 10.3208/sandf.50.547

    [12]

    INDRARATNAB , SUN Q D, NIMBALKAR S. Observed and predicted behaviour of rail ballast undermonotonic loading capturing particle breakage[J]. Canadian Geotechnical Journal, 2015, 52(4): 73-86.

    [13]

    LADE P V, YAMAMURO J. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, 1996, 122(4): 309-316. doi: 10.1061/(ASCE)0733-9410(1996)122:4(309)

    [14]

    CHEN T J, UENG T S. Energy aspects of particle breakage in drained shear of sands[J]. Géotechnique, 2015, 50(1): 65-72.

    [15]

    YU F. Characteristics of particle breakage of sand in triaxial shear[J]. Powder Technology, 2017, 320: 656-667. doi: 10.1016/j.powtec.2017.08.001

    [16]

    LIU H, ZOU D. Associated generalized plasticity framework for modeling gravelly soils considering particle breakage[J]. Journal of Engineering Mechanics, 2013, 139(5): 606-620. doi: 10.1061/(ASCE)EM.1943-7889.0000513

    [17]

    HYODO M, WU Y, ARAMAKI N, et al. Undrained monotonic and cyclic shear response and particle crushing of[J]. Canadian Geotechnical Journal, 2016, 54(2): 207-218.

    [18]

    JIA Y, XU B, CHI S, et al. Particle breakage of rockfill material during triaxial tests under complex stress paths[J]. International Journal of Geomechanics, 2019, 19(12): 04019124. doi: 10.1061/(ASCE)GM.1943-5622.0001517

    [19]

    YU F. Particle breakage in triaxial shear of a coral sand[J]. Soilsand Foundations, 2018, 58(4): 866-880. doi: 10.1016/j.sandf.2018.04.001

    [20]

    NANDA S, SIVAKUMAR V, DONOHUE S, et al. Small strain behavior and crushability of Ballyconnelly carbonate sand under monotonic and cyclic loading[J]. Canadian Geotechnical Journal, 2017, 55(7): 979-987.

    [21] 叶沁果. 珊瑚礁钙质土力学行为与颗粒破碎的试验研究[D]. 重庆: 重庆大学, 2018.

    YE Qin-guo. Experimental Study on Mechanical Behavior and Particle Breakage of Calcareous Soil in Coral Reef[D]. Chongqing: Chongqing University, 2018. (in Chinese)

    [22]

    WANG Z L, DAFALIAS Y F, SHEN C K.Bounding surface hypoplasticity model for sand[J]. Journal of Engineering Mechanics, 1990, 116(5): 983-1001. doi: 10.1061/(ASCE)0733-9399(1990)116:5(983)

    [23]

    LI X S. A sand model with state-dependent dilatancy[J]. Géotechnique, 2002, 52(3): 173-86. doi: 10.1680/geot.2002.52.3.173

    [24]

    WANG G, WANG Z, YE Q, et al. Particle breakage and deformation behavior of carbonate sand under drained and undrained triaxial compression[J]. International Journal of Geomechanics, 2020, 20(3): 04020012. doi: 10.1061/(ASCE)GM.1943-5622.0001601

    [25]

    EINAV I. Breakage mechanics-Part I: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274-1297. doi: 10.1016/j.jmps.2006.11.003

    [26]

    COOP M R, SORENSEN K K, FREITAS T B, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157

    [27]

    WEI H, ZHAO T, HE J, et al. Evolution of particle breakage for calcareous sands during ring shear tests[J]. International Journal of Geomechanics, 2018, 18(2): 04017153. doi: 10.1061/(ASCE)GM.1943-5622.0001073

    [28] 蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41(6): 989-995. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm

    CAI Zheng-yin, HOU He-ying, ZHANG Jin-xun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989-995. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm

  • 期刊类型引用(2)

    1. 占鑫杰,吕冲,桂书润,李振亚. 化学调质及固结作用下市政污泥水分转化规律. 科学技术与工程. 2025(05): 2057-2065 . 百度学术
    2. 张玉伟,宋战平,谢永利. 孔隙变化条件下黄土土水特征曲线预测模型. 岩土工程学报. 2022(11): 2017-2025 . 本站查看

    其他类型引用(4)

图(9)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-02-02
  • 网络出版日期:  2022-12-04
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回