Synergistic optimization design method for tunnel support structure system and its application
-
摘要: 隧道支护结构体系的设计方法是隧道围岩稳定性控制的基本需求,如何确定合理的支护参数是保证隧道施工安全的关键问题。为此,首先将协同学原理引入隧道支护设计,构建了隧道围岩协同支护系统,阐明了其系统组成、研究层次及表征参数;隧道围岩协同支护的核心为充分发挥支护—围岩系统、构件和要素的工作性能,从而产生协同增强效应,其特点为时机衔接、刚度匹配和变形协调,而其目的则是以最小的支护代价实现围岩稳定,本质上为多目标优化问题;进一步以围岩变形、支护受力和支护成本为设计目标,建立了基于分组加权的目标函数隶属度表征方法,据此提出了隧道支护体系多目标协同优化设计方法。将该方法在新建京张高铁八达岭长城站大跨过渡段进行应用,较之优化前支护性能利用率更高,设计更为合理,为隧道支护结构体系的优化设计提供了一种思路。Abstract: The design method for tunnel support structure system is the basic requirement of stability control of surrounding rock of tunnels. How to determine the reasonable support parameters is the key to ensure the safety of tunnel construction. Therefore, the synergetic principle is introduced to the design of tunnel support, and the synergetic support system of surrounding rock of tunnels is established, and the system composition, research level and characterization parameters are expounded. The core of the synergetic support is to give full play of the performance of the support system, structures and elements, thus resulting in a synergistic enhancement effect. Its characteristics of timely linking, stiffness matching and deformation coordination are revealed. The purpose of synergetic design of the support system is to achieve the stability of surrounding rock with the minimum support cost, which is essentially a multi-objective optimization problem. Furthermore, taking the deformation of surrounding rock, supporting force and support cost as the design objectives, a method for membership representation of objective function based on grouping weighting is established, thus a multi-objective synergetic optimization design method for tunnel support system is proposed. The method is applied in the large-span transition section of the new Badaling Great Wall station of Beijing-Zhangjiakou high-speed railway. After optimization, the supporting performance is more efficient, and the design is more reasonable than the original design scheme, which provides an idea for the optimal design of the support structure system.
-
-
表 1 地层物理力学参数
Table 1 Physical and mechanical parameters of ground
地层名称 重度γ/(kN·m-3) 泊松比μ 弹性模量E/GPa 单轴抗压强度σci/MPa mb s/10-5 a 角砾土 20 0.30 0.447 20 0.175 1.20 0.561 强风化花岗岩 22 0.30 0.570 23 0.504 1.79 0.550 弱风化花岗岩 25 0.25 0.958 29 0.843 4.54 0.531 断层岩 20 0.30 0.447 20 0.437 1.20 0.561 表 2 新八达岭隧道支护体系设计参数
Table 2 Design parameters for support of new Badaling tunnel
支护形式 支护参数 锚杆 直径db=32 mm,长Lb=11 m,间距Scb=1.2 m,排距Slb=0.8 m,预应力Fsb=100 kN 锚索 7Φ15.2 mm钢绞线,长Lc=25 m,间距Scc=排距Slc=2.4 m,预应力Fsc=1000 kN 喷射混凝土 C30喷射混凝土,厚度t1=35 cm,弹性模量E1=25 GPa 钢架 4Φ22钢格栅,间距为Ss=0.8 m/榀,等效弹性模量Es=2.66 GPa 二次衬砌 C35现场模筑混凝土,厚度t2=60 cm,弹性模量E2=30 GPa 表 3 待优化支护参数
Table 3 Parameters for support to be optimized
支护形式 锚杆 锚索 喷射混凝土 钢架 二次衬砌 协同优化参数 间距Scb,排距Slb 间距Scc,排距Slc 厚度t1 间距Ss 厚度t2 表 4 支护参数优化结果
Table 4 Optimization results of support parameters
支护参数 Scb(Slb)/m Scc(Slc)/m t1/cm Ss/m t2/cm 优化结果 1.2 2.8 30 1 45 -
[1] 张顶立. 隧道及地下工程的基本问题及其研究进展[J]. 力学学报, 2017, 49(1): 3-21. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201701002.htm ZHANG Ding-li. Essential issues and their research progress in tunnel and underground engineering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 3-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201701002.htm
[2] ORESTE P P. The convergence-confinement method: roles and limits in modern geomechanical tunnel design[J]. American Journal of Applied Sciences, 2009, 6(4): 757-771. doi: 10.3844/ajassp.2009.757.771
[3] BARTON N, LIEN R, LUNDE J. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics and Rock Engineering, 1974, 6(4): 189-236.
[4] HOEK E, CARANZA-TORRES C, CORCUM B. Hoek-Brown failure criterion[C]//Proceedings of the North American Rock Mechanics Society, 2002, Toronto: 267-273.
[5] PALMSTROM A, BROCH E. Use and misuse of rock mass classification systems with particular reference to the Q-system[J]. Tunnelling and Underground Space Technology, 2006, 21(6): 575-593. doi: 10.1016/j.tust.2005.10.005
[6] 魏云杰, 陶连金. 煤矿巷道围岩稳定性快速评价方法研究[J]. 地下空间与工程学报, 2009, 5(4): 691-697. doi: 10.3969/j.issn.1673-0836.2009.04.013 WEI Yun-jie, TAO Lian-jin. Study on the rapid evaluation method of the wall-rock stability about the colliery tunnel[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(4): 691-697. (in Chinese) doi: 10.3969/j.issn.1673-0836.2009.04.013
[7] SHARAN S K. Analytical solutions for stresses and displacements around a circular opening in a generalized Hoek-Brown rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(1): 78-85. doi: 10.1016/j.ijrmms.2007.03.002
[8] 左建平, 史月, 刘德军, 等. 深部软岩巷道开槽卸压等效椭圆模型及模拟分析[J]. 中国矿业大学学报, 2019, 48(1): 1-11. doi: 10.13247/j.cnki.jcumt.000960 ZUO Jian-ping, SHI Yue, LIU De-jun, et al. The equivalent ellipse model and simulation analysis of destressing by cutting groove in deep soft rock roadway[J]. Journal of China University of Mining & Technology, 2019, 48(1): 1-11. (in Chinese) doi: 10.13247/j.cnki.jcumt.000960
[9] 张顶立, 孙振宇. 高速铁路隧道关键科学问题及发展趋势[J]. 铁道建筑, 2018, 58(11): 1-4. doi: 10.3969/j.issn.1003-1995.2008.11.001 ZHANG Ding-li, SUN Zhen-yu. Key scientific problems and development trendency of high-speed railway tunnel[J]. Railway Engineering, 2008, 58(11): 1-4. (in Chinese) doi: 10.3969/j.issn.1003-1995.2008.11.001
[10] 张顶立, 孙振宇, 侯艳娟. 隧道支护结构体系及其协同作用[J]. 力学学报, 2019, 51(2): 577-593. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201902028.htm ZHANG Ding-li, SUN Zhen-yu, HOU Yan-juan. Tunnel support structure system and its synergistic effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 577-593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201902028.htm
[11] 哈肯 H. 高等协同学[M]. 北京: 科学出版社, 1989. HAKEN H. Higher Synergies[M]. Beijing: Science Press, 1989. (in Chinese)
[12] 左建平, 孙运江, 王金涛, 等. 大断面破碎巷道全空间桁架锚索协同支护研究[J]. 煤炭科学技术, 2016, 44(3): 1-6. doi: 10.13199/j.cnki.cst.2016.03.001 ZUO Jian-ping, SUN Yun-jiang, WANG Jin-tao, et al. Study on full space truss and anchor coordinative support of mine large cross-section broken roadway[J]. Coal Science and Technology, 2016, 44(3): 1-6. (in Chinese) doi: 10.13199/j.cnki.cst.2016.03.001
[13] WIERZBICKI A P. The use of reference objectives in multi-objective optimization[C]//Multiple Criteria Decision Making Theory and Applications, 1980, Berlin: 468-486.
[14] WIERZBICKI A P. Basic properties of scalarizmg functionals for multiobjective optimization[J]. Mathematische Operations forschung and Statistik, 1977, 8(1): 55-60.
[15] DEB K, SAXENA K. Searching for pareto-optimal solutions through dimensionality reduction for certain large- dimensional multi-objective optimization problems[C]//Proc of 2006 IEEE Congress on Evolutionary Computation, 2006, Vancouver: 3353-3360.
[16] KOSKI J, SILVENNOINEN R. Norm methods and partial weighting in multicriterion optimization of structures[J]. International Journal of Numerical Methods in Engineering, 1987(24): 1101-1121.
[17] TONON F, MAMMINO A, BERNARDINI A. Multiobjective optimization under uncertainty in tunneling: Application to the design of tunnel support/reinforcement with case histories[J]. Tunnelling and Underground Space Technology, 2002, 17(1): 33-54. doi: 10.1016/S0886-7798(02)00002-0
[18] 陈豪雄. 对隧道复合式衬砌的见解[J]. 教学与科技, 1986(1): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT198601003.htm CHEN Hao-xiong. Insights on the composite lining of tunnels[J]. Teaching and Technology, 1986(1): 31-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT198601003.htm
[19] BROWN E T. From theory to practice in rock engineering[J]. Transactions of the Institution of Mining and Metallurgy, Section A: Mining Technology, 1985(94): 67-83.
[20] HOEK E, BROWN E T. Underground Excavations in Rock[M]. London: Institution of Mining and Metallurgy, 1980.
[21] 铁路隧道设计规范:TB10003—2016[S]. 2016. Code for Design on Tunnel of Railway: TB 10003—2016[S]. 2016. (in Chinese)
[22] ORESTE P P. Analysis of structural interaction in tunnels using the convergence-confinement approach[J]. Tunnelling and Underground Space Technology, 2003, 13(2): 347-363.
[23] 孙振宇, 张顶立, 房倩, 等. 隧道初期支护与围岩相互作用的时空演化特性[J]. 岩石力学与工程学报, 2017, 36(增刊2): 3943-3956. doi: 10.13722/j.cnki.jrme.2017.0117 SUN Zhen-yu, ZHANG Ding-li, FANG Qian, et al. Spatial and temporal evolution characteristics of interaction between primary support and tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 3943-3956. (in Chinese) doi: 10.13722/j.cnki.jrme.2017.0117
[24] 孙振宇, 张顶立, 房倩. 隧道锚固系统的协同作用及设计方法[J]. 工程力学, 2019, 36(5): 53-66, 75. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201905006.htm SUN Zhen-yu, ZHANG Ding-li, FANG Qian. The synergistic effect and design method of tunnel anchorage system[J]. Engineering Mechanics, 2019, 36(5): 53-66, 75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201905006.htm
[25] 许树柏. 实用决策方法—层次分析法原理[M]. 天津: 天津大学出版社, 1988. XU Shu-bai. Use of Decision Method—Analytic Hierarchy Process[M]. Tianjin: Tianjin University Press, 1988. (in Chinese)
[26] 赵勇, 刘建友, 田四明. 深埋隧道软弱围岩支护体系受力特征的试验研究[J]. 岩石力学与工程学报, 2011, 30(8): 1663-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201108020.htm ZHAO Yong, LIU Jian-you, TIAN Si-ming. Experimental study of mechanical characteristics of support system for weak surrounding rock of deep tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8): 1663-1670. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201108020.htm
[27] 张顶立. 隧道围岩稳定性及其支护作用分析[J]. 北京交通大学学报, 2016, 40(4): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201604002.htm ZHANG Ding-li. Analysis of surrounding rock stability and support action in tunnels[J]. Journal of Beijing Jiaotong University, 2016, 40(4): 9-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201604002.htm
[28] 关宝树. 隧道工程设计要点集[M]. 北京: 人民交通出版社, 2003: 42-57. GUAN Bao-shu. Key Points of Tunnel Engineering Design[M]. Beijing: China Communications Press, 2003: 42-57. (in Chinese)
-
期刊类型引用(16)
1. 刘鹤冰. 川东红层地区隧道设计优化研究. 铁道建筑技术. 2025(03): 101-104 . 百度学术
2. 邓子昂,张继勋,张玉贤,孙艳鹏. 代理模型驱动的隧洞支护方案多目标优化方法. 水力发电学报. 2025(04): 59-71 . 百度学术
3. 洪开荣,刘永胜,潘岳. 钻爆法山岭隧道修建技术发展与展望. 现代隧道技术. 2024(02): 67-79 . 百度学术
4. 赵建利,郝雪航,余洋,李鹏程,高华民. 苏基克纳里水电站调压竖井无锚支护研究. 河北水利电力学院学报. 2024(03): 38-44 . 百度学术
5. 侯艳娟,张顶立,李然,陈旭,齐伟伟. 深埋三连拱隧道围岩压力计算方法. 力学学报. 2024(11): 3213-3226 . 百度学术
6. 丁祥,刘勇,任玉鹏,韩智铭,马凯蒙. 以初期支护为主要承载结构的衬砌参数优化研究. 公路. 2024(12): 487-492 . 百度学术
7. 张顶立,孙振宇,陶伟明. 隧道围岩大变形灾害特点与主动控制方法. 铁道标准设计. 2023(01): 1-9 . 百度学术
8. 陈文博,张顶立,孙振宇,陈旭,孟令赞. 铁路隧道概率极限状态设计分项系数标定与讨论. 铁道标准设计. 2023(01): 17-24 . 百度学术
9. 姚志雄,刘梦飞,吴波,刘耀星,陈希茂,郑国文,罗芷祎. 基于承载特性的群洞稳定性及初期支护优化研究. 现代隧道技术. 2023(01): 119-129 . 百度学术
10. 刘鹤冰. 基于投资控制的高速公路PPP项目投资人对设计人的管理研究. 铁道建筑技术. 2023(09): 199-202 . 百度学术
11. 梁鹏,高永涛,周喻,邓代强. 隧道初支合理支护时机确定方法及其工程应用. 工程科学学报. 2022(02): 265-276 . 百度学术
12. 刘鹤冰. PPP模式下高速公路项目设计优化全过程管理探究. 铁道建筑技术. 2022(09): 131-135 . 百度学术
13. 王嘉琛,张顶立,孙振宇,方黄城,刘昌. 水平互层围岩隧道破坏机理及其范围预测模型. 力学学报. 2022(10): 2835-2849 . 百度学术
14. 刘耀儒,侯少康,程立,黄跃群. 水利工程智能建造进展及关键技术. 水利水电技术(中英文). 2022(10): 1-20 . 百度学术
15. 彭磊. 公路小净距隧道后行洞支护结构位移及受力特性分析. 产业科技创新. 2021(01): 105-107 . 百度学术
16. 焦战,肖洪天. 基于博弈赋权和综合灰色关联的围岩支护评价. 科学技术与工程. 2021(34): 14769-14774 . 百度学术
其他类型引用(29)