剪胀型土的试验大数据深度挖掘与本构关系研究

    杨骏堂, 刘元雪, 郑颖人, 柏准, 赵久彬

    杨骏堂, 刘元雪, 郑颖人, 柏准, 赵久彬. 剪胀型土的试验大数据深度挖掘与本构关系研究[J]. 岩土工程学报, 2021, 43(3): 520-529. DOI: 10.11779/CJGE202103015
    引用本文: 杨骏堂, 刘元雪, 郑颖人, 柏准, 赵久彬. 剪胀型土的试验大数据深度挖掘与本构关系研究[J]. 岩土工程学报, 2021, 43(3): 520-529. DOI: 10.11779/CJGE202103015
    YANG Jun-tang, LIU Yuan-xue, ZHENG Ying-ren, BAI Zhun, ZHAO Jiu-bin. Deep mining of big data of tests and constitutive relation of dilative soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 520-529. DOI: 10.11779/CJGE202103015
    Citation: YANG Jun-tang, LIU Yuan-xue, ZHENG Ying-ren, BAI Zhun, ZHAO Jiu-bin. Deep mining of big data of tests and constitutive relation of dilative soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 520-529. DOI: 10.11779/CJGE202103015

    剪胀型土的试验大数据深度挖掘与本构关系研究  English Version

    基金项目: 

    国家自然科学基金项目 41877219

    重庆市自然科学基金项目 cstc2019jcyj-msxm0585

    重庆市规划和自然资源局科技计划项目 KJ-2018016

    详细信息
      作者简介:

      杨骏堂(1991— ),男,博士研究生,主要从事大数据与岩土本构关系的研究工作。E-mail:yangjt@aliyun.com

      通讯作者:

      刘元雪, E-mail: lyuanxue@vip.sina.com

    • 中图分类号: TU433

    Deep mining of big data of tests and constitutive relation of dilative soils

    • 摘要: 由于受到传统本构理论的约束以及未对土体基本力学特性的共同变化规律进行深入研究,使得当前建立的大多数本构模型并不能良好的反映土体实际变形机制。搭建了基于Hadoop+Spark的大数据处理平台,结合泛函网络和AIC评判准则,提出了一种能用于剪胀型土试验大数据深度挖掘研究的分布式自适应自回归算法。利用该算法,基于各塑性系数的大数据特征关系,再结合其显著性和次要影响因素的综合作用,在广义塑性力学的理论基础上建立了剪胀型土的本构模型。通过模型的验证试验,结果表明本文模型的预测效果要优于修正剑桥模型和考虑剪胀性的类剑桥模型,并且对不同应力路径下的剪胀型土的本构特性具有更强的适应性。将大数据技术和广义塑性力学应用于土的本构关系研究,有效突破了传统本构理论的束缚,具有更为广泛的理论意义,同时也为土的本构关系研究提供了新的思路。
      Abstract: Due to the restriction of the traditional constitutive theory and the lack of in-depth studies on the common change laws of the basic mechanical characteristics of soils, most of the constitutive models established at present cannot reflect the actual deformation mechanism of soils well. A big data processing platform of Hadoop and Spark is built. By using the functional network and the AIC criteria, a distributed adaptive auto-regressive algorithm is proposed for deep mining of big data of tests on dilative soils. Based on the big data characteristic relationship of each plastic coefficient, combined with its significant and secondary influence factors, the constitutive model for dilative soils is established based on the theory of generalized plastic mechanics. Through the model verification experiments, the results show that the proposed model is better than the modified Cambridge model and the similar Cambridge model considering the dilatancy, and has strong adaptability to the expression of the mechanical properties of the dilative soils under different stress paths. The big data technology and generalized plastic mechanics are applied to the studies on the constitutive relationship of soils, which effectively breaks through the shackles of the traditional constitutive theory, and is of more extensive theoretical significance. At the same time, it also provides a new idea for the studies on the constitutive relationship of soils.
    • 图  1   Yarn-Standalone的工作流程图

      Figure  1.   Flow chart of work of Yarn-Standalone

      图  2   ˉεpvd-ˉpd的大数据关系

      Figure  2.   Big data relationship between ˉεpvd and ˉpd

      图  3   B与应力应变参数之间的MIC值

      Figure  3.   Values of MIC between B and stress-strain parameters

      图  4   Bη的变化过程

      Figure  4.   Change process of B with η

      图  5   Bˉη的大数据关系

      Figure  5.   Big data relationship between B and ˉη

      图  6   Beˉp的大数据关系

      Figure  6.   Big data relationship between Be and ˉp

      图  7   Beˉεpv的大数据关系

      Figure  7.   Big data relationship between Be and ˉεpv

      图  8   Beˉεps的大数据关系

      Figure  8.   Big data relationship between Be and ˉεps

      图  9   Be¯dp,¯dq之间的大数据关系

      Figure  9.   Big data relationship between Be, ¯dp and ¯dq

      图  10   Cˉη的大数据关系

      Figure  10.   Big data relationship between C and ˉη

      图  11   Ceˉp的大数据关系

      Figure  11.   Big data relationship between Ce and ˉp

      图  12   Ce¯εpv的大数据关系

      Figure  12.   Big data relationship between Ce and ¯εpv

      图  13   Ce¯εps的大数据关系

      Figure  13.   Big data relationship between Ce and ¯εps

      图  14   Ce¯dp,¯dq之间的大数据关系

      Figure  14.   Big data relationship among Ce, ¯dp and ¯dq

      图  15   预测曲线与试验值的比较

      Figure  15.   Comparison between predicted curves and experimental values

      表  1   部分数据主要来源

      Table  1   Main sources of data

      序号国家期刊名称SJRH-index
      1英国Geotechnique2.571114
      2中国岩土工程学报0.65542
      3加拿大Canadian Geotechnical Journal1.753100
      4英国Computers and Geotechnics1.94679
      5日本Soils and Foundations1.24664
      下载: 导出CSV

      表  2   部分土样本的数据

      Table  2   Data of some soil samples

      编号试验序列点dp/kPaq/kPadp/kPadq/kPaεpv/%εps/%
      JZ-1210.67715.12795.2840.23120.690.260.39
      20.44745.43886.2830.3290.960.480.89
      24-0.02820.841112.52-2.51-7.530.569.31
      下载: 导出CSV

      表  3   Be与各次要影响因素之间的MIC值

      Table  3   Values of MIC between Be and secondary influencing factors

      mp-Bemεpv-Bemεps-Bemdp-Bemdq-Be
      0.6890.4850.6540.6600.661
      下载: 导出CSV

      表  4   验证试验的模型参数值

      Table  4   Values of model parameters validation experiments

      编号λκMMdν
      土10.00680.00421.660.950.31
      土20.01610.00511.350.870.30
      土30.01060.00491.580.890.32
      下载: 导出CSV
    • [1] 杨光华. 土的现代本构理论的发展回顾与展望[J]. 岩土工程学报, 2018, 40(8): 1363-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808002.htm

      YANG Guang-hua. Review and prospect of modern soil constitutive theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1363-1372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808002.htm

      [2]

      ROSCOE K H, SCHOFIELD A, THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240. doi: 10.1680/geot.1963.13.3.211

      [3] 殷宗泽. 一个土体的双屈服面应力-应变模型[J]. 岩土工程学报, 1988(4): 64-71. doi: 10.3321/j.issn:1000-4548.1988.04.007

      YIN Zong-ze. A double yield surface stress-strain model of soil[J]. Chinese Journal of Geotechnical Engineering, 1988(4): 64-71. (in Chinese) doi: 10.3321/j.issn:1000-4548.1988.04.007

      [4] 李广信. 土的清华弹塑性模型及其发展[J]. 岩土工程学报, 2006, 25(1): 1-10. doi: 10.3321/j.issn:1000-4548.2006.01.001

      LI Guang-xin. Tsinghua elastoplastic model of soil and its development[J]. Chinese Journal of Geotechnical Engineering, 2006, 25(1): 1-10. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.01.001

      [5] 姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151. doi: 10.3321/j.issn:1000-6915.2009.10.023

      YAO Yang-ping, HOU Wei, LUO Ting. Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.10.023

      [6] 刘元雪, 郑颖人. 高等岩土塑性力学[M]. 北京: 科学出版社, 2019.

      LIU Yuan-xue, ZHENG Ying-ren. Plastic Mechanics of Geomaterial[M]. Beijing: Science Press, 2019. (in Chinese)

      [7] 陈云敏, 马鹏程, 唐耀. 土体的本构模型和超重力物理模拟[J]. 力学学报, 2020, 52(4): 901-915. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202004001.htm

      CHEN Yun-min, MA Peng-cheng, TANG Yao. Constitutive models and hypergravity physical simulation of soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 901-915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202004001.htm

      [8] 赵成刚, 张雪东, 郭漩. 土的本构方程与热力学力学[J]. 力学进展, 2006, 36(4): 611-618. doi: 10.3321/j.issn:1000-0992.2006.04.012

      ZHAO Cheng-gang, ZHANG Xue-dong, GUO Xuan. Constitutive equation and thermodynamics of soil[J]. Advances in Mechanics, 2006, 36(4): 611-618. (in Chinese) doi: 10.3321/j.issn:1000-0992.2006.04.012

      [9]

      CHAO S, FENG Y. Data analytics and machine learning for smart process manufacturing: recent advances and perspectives in the big data era[J]. Engineering, 2019, 15(6): 231-239.

      [10] 曾静, 王靖涛. 土的本构关系的数值建模方法[J]. 岩石力学与工程学报, 2002(增刊2): 2336-2340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2002S2010.htm

      ZENG Jing, WANG Jing-tao. Numerical modeling method of soil constitutive relation[J]. Journal of Rock Mechanics and Engineering, 2002(S2): 2336-2340. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2002S2010.htm

      [11]

      BANIMAHD A, YASROBI S S, WOODWARD P K. Artificial neural network for stress-strain behavior of sandy soils: Knowledge based verification[J]. Computers and Geotechnics, 2005, 32(5): 377-386. doi: 10.1016/j.compgeo.2005.06.002

      [12]

      ZHOU W H, TAN F, YUEN K V. Model updating and uncertainty analysis for creep behavior of soft soil[J]. Computers and Geotechnics, 2018, 100(12): 135-143.

      [13]

      BONTE C, VERCAUTEREN F. Privacy-preserving logistic regression training[J]. BMC Medical Genomics, 2018, 11(4): 86-93.

      [14]

      ALI K, KAMRAN M. Design of a vertical search engine for synchrotron data: a big data approach using Hadoop ecosystem[J]. SN Applied Sciences, 2019, 1(12): 341-347.

      [15]

      Mohamed SUAD, Mutaher FADL. Intrusion detection model using machine learning algorithm on Big Data environment[J]. Journal of Big Data, 2018, 5(1): 1-12. doi: 10.1186/s40537-017-0110-7

      [16] 周永权, 赵斌, 焦李成. 基于泛函网络的多维函数逼近理论及学习算法[J]. 系统工程与电子技术, 2005, 27(5): 906-909. doi: 10.3321/j.issn:1001-506X.2005.05.038

      ZHOU Yong-quan, ZHAO Bin, JIAO Li-chen. Theory and learning algorithm of multi-dimensional function approximation based on functional networks[J]. Systems Engineering and Electronics, 2005, 27(5): 906-909. (in Chinese) doi: 10.3321/j.issn:1001-506X.2005.05.038

      [17] 肖倩, 周永权, 陈振. 基函数可递归的泛函神经元网络学习算法[J]. 计算机科学, 2013, 40(1): 203-207. doi: 10.3969/j.issn.1002-137X.2013.01.047

      XIAO Qian, ZHOU Yong-quan, CHEN Zhen. Functional network learning algorithm with recursively base functions[J]. Computer Science, 2013, 2013, 40(1): 203-207. (in Chinese) doi: 10.3969/j.issn.1002-137X.2013.01.047

      [18]

      SATOSHI K, YUTA Y. AIC for the group Lasso in generalized linear models[J]. Japanese Journal of Statistics and Data Science, 2019, 2(2): 545-558. doi: 10.1007/s42081-019-00052-0

      [19]

      RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334: 1518-1524. doi: 10.1126/science.1205438

      [20] 杨光华, 温勇, 钟志辉. 基于广义位势理论的类剑桥模型[J]. 岩土力学, 2013, 34(6): 1521-1528. doi: 10.16285/j.rsm.2013.06.002

      YANG Guang-hua, WEN Yong, ZHONG Zhi-hui. Similar cam-clay model based on generalized potential theory[J]. Rock and Soil Mechanics, 2013, 34(6): 1521-1528. (in Chinese) doi: 10.16285/j.rsm.2013.06.002

      [21] 盛佳韧. 上海黏土力学特性综合试验研究及本构模拟[D]. 上海: 上海交通大学, 2012.

      SHENG Jia-ren. Comprehensive Experimental Study and Constitutive Simulation on mechanical Properties of Shanghai Clay[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese)

    图(15)  /  表(4)
    计量
    • 文章访问数: 
    • HTML全文浏览量:  0
    • PDF下载量: 
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-29
    • 网络出版日期:  2022-12-04
    • 刊出日期:  2021-02-28

    目录

      /

      返回文章
      返回