Effects of seepage in clay-sand composite strata on artificial ground freezing and surrounding engineering environment
-
摘要: 随着沿海地区越来越多大型跨海、越江工程的出现,人工地层冻结法面临着更加复杂的水文地质环境问题及挑战。依托工程背景,通过典型砂黏组合地层的设计,按照严格相似比,建立了组合地层渗流环境下人工地层冻结法的缩尺模型,分析了软黏土下伏较大渗流砂层的工况下,渗流对上覆冻融敏感软黏土的冻结施工及周围工程环境的影响。试验测定了不同渗流速度下各影响区域内的温度、冻胀力、地表沉降量等参数指标。结果表明下伏砂层渗流速度过大会无法完成冻结,存在临界渗流速度。且渗流工况下软黏土上下冻结帷幕边缘的冻结效果也截然不同,尤其是稳定冻结温度和冻胀力发展模式。渗流直接影响的区域,渗流对软黏土潜热效应的削弱明显,随着渗流速度增大相变平衡时间呈线性减小。综合研究成果为冻结方案优化及施工安全提出了理论性指导意见,并对现场工程可能会遇到的施工质量、隧道安全、环境治理等做出预警建议。Abstract: With the emergence of more and more large-scale cross-sea and river-crossing projects in coastal areas, the artificial ground freezing (AGF) faces more complicated hydrogeological environmental problems and challenges. Based on the engineering background of the large seepage boundary near the frozen soft clay, a scale model is established through strict similarity design to analyze the effects of seepage on the freezing construction of overlying freeze-thaw sensitive soft clay and the surrounding engineering environment under the condition of soft clay with larger seepage sand layer. The temperature, frost-heave force and surface settlement in each affected area under different seepage velocities are measured. The results show that the excessive seepage velocity of the underlying sand layer will make it impossible to complete the freezing, and there is a critical seepage velocity. In addition, the freezing effects of the upper and lower freezing curtain edges of soft clay under seepage conditions are also completely different, especially the stable freezing temperature and the development mode of the frost-heave force. In the area directly affected by seepage, the latent heat effects of seepage on soft clay are significantly weakened, and the phase transition equilibrium time decreases linearly with the increase of seepage velocity. The whole comprehensive research results provide theoretical guidance and valuable advices for the optimization of freezing scheme and construction safety of AGF. The relevant predictions and suggestions are made for construction quality, tunnel safety and environmental management that may be encountered in engineering practice.
-
-
表 1 模型试验土体特性表
Table 1 Soil properties of model soils
类型 内摩擦角/(°) 黏聚力/kPa 重度/(kN·m-3) 含水率/% 孔隙比 原型(软黏土) 11.5 14.0 16.90 49.86 1.38 模型(软黏土) 11.0 12.7 16.55 50.00 1.38 原型(砂土) 34.1 0 18.90 26.90 0.97 模型(砂土) — — — 27.00 0.97 注: ac,φ数据来自正常固结的快剪试验,模型(砂土)通过控制孔隙比进行重塑。表 2 模型试验相似特性表
Table 2 Similar characteristics of model tests
物理量 量纲 相似常数 长度l L 1/N 应力σ ML-1T-2 1/N 位移l L 1/N 时间t T 1/N 应变e 1 表 3 温度拟合方差表
Table 3 Variances of temperature fitting
渗流速度/(m·d-1) 方差 0 0.907 0.30 0.935 0.50 0.878 0.75 0.901 1.20 0.954 3.00 0.789 表 4 渗流工况下现场冻结施工所需的时间预测表
Table 4 Time required for on-site freezing construction
渗流速度/(m·d-1) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 1.0 1.1 时间/d 22.6 24.5 26.5 28.7 31.2 33.6 36.6 39.7 43.0 46.7 50.6 54.8 表 5 现场冻结施工建议措施表
Table 5 Suggestions for freezing construction
渗流速度/(m·d-1) 建议 0~0.5 正常施工并做好延长工期的计划与安排 0.5~1.2 可打防渗帷幕或适当采用抽水的方式降低流速 1.2~ 须采取特殊措施降低冻结区域地下水流速,如打竖排的冻结管,制作防渗帷幕,人工降水等措施 表 6 渗流速度对隧道所受冻胀合力影响预测
Table 6 Effects of seepage velocity on frost-heave force on tunnel
渗流速度/(m·d-1) 0 0.25 0.50 0.75 1.0 冻胀合力/(MPa·m) 24.7 22.2 20.2 18.8 17.0 表 7 渗流速度与地表变形关系表
Table 7 Relationship between seepage velocity and surface deformation
渗流速度/(m·d-1) 最大隆起/mm 最大沉降/mm 平均沉降梯度(0.001) 0 6.3 68.7 1.53 0.25 5.4 53.2 1.72 0.50 4.5 47.6 1.93 0.75 3.8 43.7 2.03 1.0 3.5 41.5 2.10 表 8 渗流工况下地表变形防治注意事项表
Table 8 Precautions for prevention of surface deformation under seepage conditions
渗流速度/(m·d-1) 建议 0 应注意防治较大的地表沉降量 其他 注意防治不均匀沉降,以及长期沉降 -
[1] 高娟, 冯梅梅, 杨维好. 渗流作用下裂隙岩体冻结温度场分布规律研究[J]. 采矿与安全工程学报, 2013, 30(1): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201301013.htm GAO Juan, FENG Mei-mei, YANG Wei-hao. Research on distribution law of frozen temperature field of fractured rock mass with groundwater seepage[J]. Journal of Mining & Safety Engineering, 2013, 30(1): 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201301013.htm
[2] 张学富, 喻文兵. 寒区隧道渗流场和温度场耦合问题的三维非线性分析[J]. 岩土工程学报, 2006, 28(9): 1095-1100. doi: 10.3321/j.issn:1000-4548.2006.09.009 ZHANG Xue-fu, YU Wen-bing. Three-dimensional nonlinear analysis for coupled problem of seepage field and temperature field of cold regions tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1095-1100. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.009
[3] 郭永富, 梁洪振. 大流速下的地层冻结[J]. 市政技术, 2004, 22(增刊): 345-348. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGSW200406001092.htm GUO Yong-fu, LIANG Hong-zhen. Ground freezing under high velocity[J]. Municipal Technology, 2004, 22(S0): 345-348. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGSW200406001092.htm
[4] 赖远明, 吴紫汪. 寒区隧道温度场,渗流场和应力场耦合非线性分析[J]. 岩土工程学报, 1999, 21(5): 529-533. doi: 10.3321/j.issn:1000-4548.1999.05.001 LAI Yuan-ming, WU Zi-wang. Nonlinear analyses for the couple problem of temperature, seepage and stress fields in cold region tunnels[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 529-533. (in Chinese) doi: 10.3321/j.issn:1000-4548.1999.05.001
[5] 程桦, 林键, 王彬, 等. 饱和砂层渗流冻结水热耦合模型与试验验证[J]. 科学技术与工程, 2018, 18(12): 38-44. doi: 10.3969/j.issn.1671-1815.2018.12.006 CHENG Hua, LIN Jian, WANG Bin, et al. Mathematical model and test verification of seepage freezing in saturated sand layer[J]. Science Technology and Engineering, 2018, 18(12): 38-44. (in Chinese) doi: 10.3969/j.issn.1671-1815.2018.12.006
[6] 周晓敏, 龙肖阁. 渗流地层人工冻结温度场和渗流场之数值研究[J]. 煤炭学报, 2007, 32(2): 24-28. doi: 10.13225/j.cnki.jccs.2007.01.005 ZHOU Xiao-min, LONG Xiao-ge. Numerical research on the temperature and seepage fields of artificial seepage ground freezing[J]. Journal of China Coal Society, 2007, 32(2): 24-28. (in Chinese) doi: 10.13225/j.cnki.jccs.2007.01.005
[7] HU R, LIU Q, XING Y. Case study of heat transfer during artificial ground freezing with groundwater flow[J]. Water, 2018, 10(10): 1322. doi: 10.3390/w10101322
[8] VITEL M, ROUABHI A, TIJANI M. Modeling heat and mass transfer during ground freezing subjected to high seepage velocities[J]. Computers and Geotechnics, 2016, 73: 1-15. doi: 10.1016/j.compgeo.2015.11.014
[9] AHMED M, MENG-MENG Z, ZAKI A M. Optimization of artificial ground freezing in tunneling in the presence of seepage flow[J]. Computers and Geotechnics, 2016, 75: 112-125. doi: 10.1016/j.compgeo.2016.01.004
[10] PIMENTEL E, SRES A, ANAGNOSTOU G. Large-scale laboratory tests on artificial ground freezing under seepage flow conditions[J]. Géotechnique, 2012, 62(3): 227-241. doi: 10.1680/geot.9.P.120
[11] 崔灏. 渗流作用下富水砂卵石层井筒冻结壁形成研究[J]. 煤炭技术, 2018, 37(12): 61-63. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201812021.htm CUI Hao. Research on the formation of the freezing wall of the shaft in the water-rich sand and gravel layer under the action of seepage[J]. Coal Technology, 2018, 37(12): 61-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201812021.htm
[12] 陈湘生, 濮家骝, 殷昆亭, 等. 地基冻-融循环离心模型试验研究[J]. 清华大学学报(自然科学版), 2002, 42(4): 531-534. doi: 10.3321/j.issn:1000-0054.2002.04.029 CHEN Xiang-sheng, PU Jia-liu, YIN Kun-ting, et al. Centrifuge modelling tests of foundation undergoing two cycles of frost heave and thaw settlement[J]. Journal of Tsinghua University (Natural Science Edition), 2002, 42(4): 531-534. (in Chinese) doi: 10.3321/j.issn:1000-0054.2002.04.029
[13] 于琳琳, 徐学燕. 人工侧向冻结条件下土的冻结试验[J]. 岩土力学, 2009, 30(1): 231-235. doi: 10.3969/j.issn.1000-7598.2009.01.041 YU Lin-lin, XU Xue-yan. Test analysis of disturbed soil by lateral artificial freezing[J]. Rock and Soil Mechanics, 2009, 30(1): 231-235. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.01.041
[14] ZHOU J, TANG Y. Artificial ground freezing of fully saturated mucky clay: thawing problem by centrifuge modeling[J]. Cold Regions Science and Technology, 2015, 117: 1-11. doi: 10.1016/j.coldregions.2015.04.005
[15] 王升福, 杨平, 刘贯荣, 等人工冻融软黏土微观孔隙变化及分形特性分析[J]. 岩土工程学报, 2016, 38(7): 1254-1261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607012.htm WANG Sheng-fu, YANG Ping, LIU Guan-rong, et al. Micro pore change and fractal characteristics of artificial freeze thaw soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1254-1261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607012.htm
[16] 陈婷婷, 高彦斌, 徐超, 等. 结构性对上海软粘土的压缩特性影响[C]//第八届全国工程地质大会论文集, 2008, 上海. CHEN Ting-ting, GAO Yan-bin, XU Chao, et al. Influence of soft structure on the compressibility of Shanghai clay[C]//Proceedings of the Eighth National Engineering Geology Conference, 2008, Shanghai. (in Chinese)
[17] ZHOU J, TANG Y. Centrifuge experimental study of thaw settlement characteristics of mucky clay after artificial ground freezing[J]. Engineering Geology, 2015, 190(14): 98-108.
[18] 崔广心. 冻结法凿井的模拟试验原理[J]. 中国矿业大学学报, 1989, 18(1): 59-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD198901007.htm CUI Guang-xin. The principle of model test for freezing shaft sinking[J]. Journal of China University of Mining & Technology, 1989, 18(1): 59-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD198901007.htm
[19] 张驰, 张涛, 韩涛, 等. 管壁温度非恒定条件下单管冻结温度场解析计算[J]. 煤炭科学技术, 2012, 40(3): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201203007.htm ZHANG Chi, ZHANG Tao, HAN Tao, et al. Analysis calculation on single pipeline freezing temperature field under non-constant condition of pipe wall temperature[J]. Coal Science and Technology, 2012, 40(3): 20-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201203007.htm
[20] 阴悦, 罗竹, 张勇. 渗流地层斜井帷幕冻结温度场研究[J]. 煤炭技术, 2017, 36(12): 45-47. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201712018.htm YIN Yue, LUO Zhu, ZHANG Yong. Research on freezing temperature field of inclined shaft in seepage stratum[J]. Coal Technology, 2017, 36(12): 45-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201712018.htm
[21] 李东阳, 刘波, 王莉, 等. 冻结器传热的冷源相似准则[J]. 岩石力学与工程学报, 2015, 34(4): 814-820. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504019.htm LI Dong-yang, LIU Bo, WANG Li, et al. Similarity criterion of freezing pipe as heat sink during heat exchange[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 814-820. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504019.htm
[22] 李方政, 夏明萍. 基于指数积分函数的人工冻土温度场解析研究[J]. 东南大学学报:自然科学版, 2004, 34(4): 469-473. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX200404010.htm LI Fang-zheng, XIA Ming-ping. Study on analytical solution of temperature field of artificial frozen soil by exponent- integral function[J]. Journal of Southeast University: Natural Science Edition, 2004, 34(4): 469-473. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX200404010.htm
[23] 陆宏轮. 饱和多孔介质冻融过程的混合物连续介质理论[J]. 西南交通大学学报, 2001(6): 599-603. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200106010.htm LU Hong-lun. Continuum theory of mixture for freezing and thawing of water-saturated porous media[J]. Journal of Southwest Jiaotong University, 2001(6): 599-603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200106010.htm
[24] 高娟, 冯梅梅, 高乾, 等. 地铁联络通道冻结施工的热-流-固耦合分析[J]. 冰川冻土, 2013, 35(4): 904-911. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201304014.htm GAO Juan, FENG Mei-mei, GAO Gan, et al. THM coupling analysis of connected aisle in metro construction by artificial freezing method[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 904-911. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201304014.htm
[25] 孙闯, 林增华. 高水压越江隧道联接通道渗流应力耦合分析[J]. 长江科学院院报, 2011, 28(11): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201111013.htm SUN Chuang, LIN Zeng-hua. Coupled seepage-stress in the connection aisle of cross-river tunnel under high water pressure[J]. Journal of Yangtze River Scientific Research Institute, 2011, 28(11): 55-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201111013.htm
[26] CHEN Y L, AZZAM R, FERNANDEZ-STEEGER T M, et al. Studies on construction pre-control of a connection aisle between two neighboring tunnels in Shanghai by means of 3D FEM, neural networks and fuzzy logic[J]. Geotechnical and Geological Engineering, 2009, 27(1): 155-167.
[27] KETCHAM S A, BLACK P B. Initial Results From Small-Scale Frost Heave Experiments in a Centrifuge[R]. Chicago: CRREL Report, 1995.
-
期刊类型引用(9)
1. 宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 . 百度学术
2. 童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 . 百度学术
3. 幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 . 百度学术
4. 王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 . 百度学术
5. 魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 . 百度学术
6. 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 . 百度学术
7. 刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 . 百度学术
8. 高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 . 百度学术
9. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看
其他类型引用(14)