基于坡角变化的反倾层状岩质斜坡倾倒变形离心模型试验研究

    郑达, 张硕, 郑光

    郑达, 张硕, 郑光. 基于坡角变化的反倾层状岩质斜坡倾倒变形离心模型试验研究[J]. 岩土工程学报, 2021, 43(3): 439-447. DOI: 10.11779/CJGE202103006
    引用本文: 郑达, 张硕, 郑光. 基于坡角变化的反倾层状岩质斜坡倾倒变形离心模型试验研究[J]. 岩土工程学报, 2021, 43(3): 439-447. DOI: 10.11779/CJGE202103006
    ZHENG Da, ZHANG Shuo, ZHENG Guang. Centrifugal model tests on toppling deformation of counter-tilt layered rock slopes based on change of slope angle[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 439-447. DOI: 10.11779/CJGE202103006
    Citation: ZHENG Da, ZHANG Shuo, ZHENG Guang. Centrifugal model tests on toppling deformation of counter-tilt layered rock slopes based on change of slope angle[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 439-447. DOI: 10.11779/CJGE202103006

    基于坡角变化的反倾层状岩质斜坡倾倒变形离心模型试验研究  English Version

    基金项目: 

    国家重点研发计划项目 2018YFC1504905

    国家自然科学基金项目 41772317

    成都理工大学地质灾害防治与地质环境保护国家重点实验室自主研究课题 SKLGP2020Z008

    详细信息
      作者简介:

      郑达(1977— ),男,博士,教授,主要从事地质灾害评价防治及高边坡稳定性方面的教学与研究工作。E-mail:zhengda@cdut.cn

      *通信作者(E-mail: 1120157137@qq.com

    • 中图分类号: TU413

    Centrifugal model tests on toppling deformation of counter-tilt layered rock slopes based on change of slope angle

    • 摘要: 基于临空条件变化对倾倒变形斜坡影响的认识,以澜沧江古水水电站倾倒变形边坡为原型,通过3组斜坡模型的离心试验,模拟不同坡角条件下反倾层状斜坡的变形演化与破坏过程,获得坡角变化与倾倒变形发展演化之间的关系。研究结果表明:反倾斜坡倾倒破坏最先发生在坡脚位置,而后向上部发展。坡角越陡,产生这种变形需要的累积时间越短;反倾层状岩质斜坡倾倒变形演化过程可分为4个阶段:①斜坡岩体倾倒,斜坡后缘沉降;②坡脚岩层破裂,岩体“倾倒-弯曲”变形;③折断带从坡脚向坡顶延伸,坡顶岩体张拉破坏;④折断带延伸直至贯通,岩体“倾倒-折断”破坏;其它条件不变的情况下,坡度较陡的斜坡发生倾倒变形的范围更大,更可能在倾倒过程中产生多级折断带,造成斜坡破坏的能量释放不是一次性的;坡角的变化会导致斜坡最终失稳模式的差异,坡角越缓,倾倒变形斜坡更有可能演化成为整体滑移失稳,坡角越陡,岩体倾倒后出现崩塌的可能性更大。
      Abstract: Based on the understanding of the effects of changes in the critical conditions on toppling deformation slopes, taking the toppling deformation slope of Gushui hydropower station of the Lancang River as the prototype, and by simulating the deformation evolution and failure process of counter-tilt layered slopes under different slope angles through centrifugal tests on three sets of slope models with different slope angles, the relationship between the change of the slope angle and the development of the toppling deformation is obtained. The results indicate that the toppling damage of the counter-tilt slope occurs first at the foot of the slope and then develops upward. The larger angle will shorten the cumulative time required for deformation. The evolution process of the toppling deformation of the counter-tilt layered rock slope can be divided into 4 stages: (1) The rock body of the slope falls, and its trailing edge settles. (2) The rock at the bottom of the slope is broken, and the "toppling and bending" deformation occurs. (3) The broken zone extends from the bottom to the top of the slope, and the rock at the top of the slope is damaged by tension. (4) The broken zone extends until it is coalescent, and the "toppling and breaking" deformation occurs. If other conditions remain unchanged, the steeper slopes have a greater range of toppling deformation and are more likely to produce multi-stage broken zones during dumping, and the energy that causes the slope damage is released multiple times. Changing the angle of the slope can lead to differences in the final destabilization pattern. The smaller the slope angle, the more likely the deformed slope of the dump will evolve into an overall slip instability, and the steep slopes are more likely to collapse after toppling.
    • 图  1   斜坡工程地质剖面图

      Figure  1.   Engineering geological profiles of slope

      图  2   TLJ-500土工离心机

      Figure  2.   TLJ-500 geotechnical centrifuge

      图  3   模型设计图

      Figure  3.   Designed model

      图  4   斜坡试验模型

      Figure  4.   Test model for slope

      图  5   斜坡初始阶段变形破坏迹象

      Figure  5.   Deformation signs of initial stage slope

      图  6   斜坡变形迹象

      Figure  6.   Deformation signs of slope

      图  7   斜坡倾倒后破坏形态

      Figure  7.   Destructive pattern after slope toppling

      图  8   75°斜坡发育二级折断带

      Figure  8.   Developed secondary fracture zone of slope of 75°

      图  9   斜坡位移矢量

      Figure  9.   Displacement vectors of slopes

      图  10   监测点竖向位移变化曲线

      Figure  10.   Variation curves of vertical displacement at monitoring points

      图  11   LVDT3测点竖向位移-时间曲线

      Figure  11.   Curves of displacement vs. time at monitoring point LVDT3

      图  12   “倾倒-剪切滑移”成灾演化模式图

      Figure  12.   “Toppling-shear slide” evolution pattern

      图  13   “倾倒-崩塌”演化模式图

      Figure  13.   “Toppling-collapse” evolution pattern

      表  1   离心模型试验主要物理量相似关系

      Table  1   Similar relations of main physical quantities in centrifugal model tests

      物理量符号相似比符号比例系数(模型/原型)
      长度LC11/120
      密度ρCρ1/1
      弹性模量ECE1/1
      加速度aCa120/1
      位移uCu1/120
      内聚力cCc1/1
      内摩擦角φCφ1/1
      应力σCσ1/1
      应变εCε1/1
      泊松比μCμ1/1
      下载: 导出CSV

      表  2   原型及相似材料物理力学参数

      Table  2   Physical and mechanical parameters of prototypes and similar materials

      材料种类密度/(g·cm-3)弹模/MPa抗压强度/MPa抗拉强度/MPa内聚力/ kPa 内摩擦角/(°)
      原型变质砂岩2.423000151.75
      层间黏结3516
      模型变质砂岩2.38280014.81.84
      层间黏结34.515.8
      下载: 导出CSV

      表  3   各斜坡不同监测点竖向位移量

      Table  3   Displacements of slopes at different monitoring points

      坡角竖向位移变化值/mm
      LVDT1LVDT2LVDT3
      55°773552
      65°874968
      75°9279
      下载: 导出CSV
    • [1] 黄润秋, 李渝生, 严明. 斜坡倾倒变形的工程地质分析[J]. 工程地质学报, 2017, 25(5): 1165-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201705001.htm

      HUANG Run-qiu, LI Yu-sheng, YAN Ming. The implication and evaluation of toppling failure in engineering geology practice[J]. Journal of Engineering Geology, 2017, 25(5): 1165-1181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201705001.htm

      [2] 杨啡, 邓辉, 曾阳益. 云南古水水电站巨型堆积体演化过程及稳定分析[J]. 人民长江, 2016, 47(21): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201621012.htm

      YANG Fei, DENG Hui, ZENG Yang-yi. Evolution process and stability analysis of large accumulative body at Gushui Hydropower Station[J]. Yangtze River, 2016, 47(21): 52-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201621012.htm

      [3] 张小刚, 陈衍, 张栏馨. 黄登水电站坝前1号倾倒松弛岩体稳定性分析[J]. 西北水电, 2017(6): 23-26. doi: 10.3969/j.issn.1006-2610.2017.06.006

      ZHANG Xiao-gang, CHEN Yan, ZHANG Lan-xin. Analysis on stability of toppling and slack rock mass 1 before dam, Huangdeng Hydropower Station[J]. Northwest Hydropower, 2017(6): 23-26. (in Chinese) doi: 10.3969/j.issn.1006-2610.2017.06.006

      [4] 杨根兰, 黄润秋, 严明, 等. 小湾水电站饮水沟大规模倾倒破坏现象的工程地质研究[J]. 工程地质学报, 2006, 14(2): 165-171. doi: 10.3969/j.issn.1004-9665.2006.02.004

      YANG Gen-lan, HUANG Run-qiu, YAN Ming, et al. Engineering geological study on a large-scale topping deformation at Xiaowan hydropower station[J]. Journal of Engineering Geology, 2006, 14(2): 165-171. (in Chinese) doi: 10.3969/j.issn.1004-9665.2006.02.004

      [5] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

      HUANG Run-qiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.03.001

      [6] 程东幸, 刘大安, 丁恩保, 等. 层状反倾岩质斜坡影响因素及反倾条件分析[J]. 岩土工程学报, 2005, 27(11): 1362-1366. doi: 10.3321/j.issn:1000-4548.2005.11.027

      CHENG Dong-xing, LIU Da-an, DING En-bao, et al. Analysis on influential factors and toppling conditions of toppling rock slope[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 1362-1366. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.11.027

      [7]

      PRITCHARD M A, SAVIGNY K W. The Heather Hill Landslide, an example of a large scale toppling failure in a natural slope[J]. Canadian Geotechnical Journal, 1991, 28(3): 410-422. doi: 10.1139/t91-051

      [8] 刘顺昌. 如美水电站岩质斜坡倾倒破坏机理研究[D]. 武汉: 中国地质大学, 2013.

      LIU Shun-chang. Study on Toppling Failure Mechanism of Rock Slope in Rumei Hydropower Station[D]. Wuhan: China University of Geosciences, 2013. (in Chinese)

      [9] 卢增木, 陈从新, 左保成, 等. 对影响逆倾层状斜坡稳定性因素的模型试验研究[J]. 岩土力学, 2006, 27(4): 629-632, 647. doi: 10.3969/j.issn.1000-7598.2006.04.025

      LU Zeng-mu, CHEN Cong-xin, ZUO Bao-cheng, et al. Experimentation research on factors influencing stability of anti-dip layered slope[J]. Rock and Soil Mechanics, 2006, 27(4): 629-632, 647. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.04.025

      [10] 陈孝兵, 李渝生, 赵小平. 底摩擦重力试验在倾倒变形岩体稳定性研究中的应用[J]. 地学前缘, 2008, 21(43): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802038.htm

      CHEN Xiao-bing, LI Yu-sheng, ZHAO Xiao-ping. The application of bottom-friction gravity test to the study of the stability of the toppling rock mass[J]. Earth Science Frontiers, 2008, 21(43): 36-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802038.htm

      [11] 汪小刚, 张建红, 赵毓芝, 等. 用离心模型研究岩石斜坡的倾倒破坏[J]. 岩土工程学报, 1996, 18(5): 18-25.

      WANG Xiao-gang, ZHANG Jian-hong, ZHAO Yu-zhi, et al. Investigations on mechanism of slope toppling failure by centrifuge model testing[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(5): 18-25. (in Chinese)

      [12] 毕芬芬.中缓倾内上硬下软型边坡失稳机理物理模拟研究 ——以贵州关岭大寨滑坡为例[D]. 成都: 成都理工大学, 2013.

      BI Fen-fen. Physical Simulation Study on the Formation Mechanism of A Medium Low-Angle and Counter-tilt Slope with Rigid Layers on the Soft-Taking the Dazhai Landslide in Guanling County of Guizhou Province As Example[D]. Chengdu: Chengdu University of Technology, 2013. (in Chinese)

      [13] 郑达, 王沁沅, 毛峰, 等. 反倾层状岩质斜坡深层倾倒变形关键致灾因子及成灾模式的离心试验研究[J]. 岩石力学与工程学报, 2019, 38(10): 1954-1963. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910002.htm

      ZHENG Da, WANG Qin-yuan, MAO Feng, et al. Centrifuge model test study on key hazard-inducing factors of deep toppling deformation and disaster patterns of counter-tilt layered rock slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 1954-1963. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910002.htm

      [14] 蒋黔生. 相似理论及模型试验[J]. 工程机械, 1982(7): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA198207014.htm

      JIANG Qin-sheng. Similarity theory and model test[J]. Construction Machinery and Equipment, 1982(7): 30-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA198207014.htm

    图(13)  /  表(3)
    计量
    • 文章访问数:  295
    • HTML全文浏览量:  25
    • PDF下载量:  162
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-05-13
    • 网络出版日期:  2022-12-04
    • 刊出日期:  2021-02-28

    目录

      /

      返回文章
      返回