Field tests on top-shaped concrete block cushion-reinforced soft soil foundation drained with sand bag well
-
摘要: 常规袋装砂井排水的软土地基要求缓慢加荷因而占用了较多工期不利于工后沉降控制。为加快袋装砂井排水地基的加荷速率开展陀螺桩垫层加强袋装砂井排水地基现场试验。研究表明:陀螺桩垫层可以提高地基的整体稳定性,在快速加荷导致软土孔压系数
ˉB 值大于1的条件下保持地基稳定;陀螺桩垫层降低了地基浅部高压缩性土层的压缩量,相对增大了软土层下无排水体土层的压缩量,抑制软土侧向变形的发展,降低工后沉降的速率;陀螺桩垫层降低了压缩层中的孔压峰值,使软土固结过程加快;相对于砂垫层陀螺桩垫层具有更大刚度,导致上部荷载在地基中产生的附加应力分布型式发生显著变化,使得袋装砂井排水地基的综合性状得到加强。Abstract: The soft soil foundation drained by the conventional sand bag wells requires slow loading, which occupies more construction period and is not conducive to post-construction settlement control. In order to accelerate the loading rate of the drainage foundation of sand bag wells, field tests on the top-shaped concrete blocks-reinforced drainage foundation of sand bag wells are conducted. The research shows that the top-shaped concrete blocks can improve the overall stability of the foundation, and keep the foundation stable under the condition that the rapid loading causes the value of the pore pressure coefficientˉB of soft soil to be greater than 1. The top-shaped concrete blocks reduce the high-compressibility soil in the shallow part of the foundation. The compression of the layer relatively increases the compression of the undrained soil layer under the soft soil layer, inhibits the development of lateral deformation of the soft soil, and reduces the rate of post-construction settlement. The top-shaped concrete block layer reduces the pore pressure in the compression layer, and the peak value accelerates the consolidation process of soft soil. The top-shaped concrete blocks have greater rigidity than the sand cushions, resulting in a significant change in the type of additional stress distribution generated by the upper load in the foundation, leading to that the comprehensive behavior of the drainage sandbag ground is strengthened. -
-
表 1 土层物理力学性质指标
Table 1 Physical and mechanical properties of soil
地层名称 层厚/m 含水率/% 密度/(g·cm-3) 孔隙比 液限/% 塑限/% 压缩系数/MPa-1 压缩模量/MPa qc/MPa fs/kPa 黏聚力c0/kPa 内摩擦角 φ0 /(°)① 淤泥质土 3.7 55 1.56 1.7 58 41 1.25 2.15 0.22 6.0 8.4 11 ② 淤泥质土 4.0 52 1.70 1.4 62 45 0.76 3.12 0.45 14.4 11.4 16 ③ 淤泥质细砂 7.7 22 2.06 0.6 — — 0.13 12.12 2.65 34.5 — 32 ④ 粉质黏土 4.6 35 1.82 0.9 43 30 0.21 8.85 1.85 40.7 12.8 18 表 2 软土地基加固方案参数汇总表
Table 2 Parameters of soft soil foundation reinforcement program
加固措施 直径/mm 间距/m 深度位置/m 材料属性 布置方式 袋装砂井 70 1.3 10 聚丙烯编织布 正三角形 砂垫层 中粗砂 — 0.6 2.3×10-3 cm/d 等厚 陀螺桩 500 0.5 0.5 C30砼 正方形 桩顶系筋 12 0.5 桩顶面 HRB400 正方形网格 桩身系筋 横筋20纵筋14 0.5 桩顶下0.25 HRB400 正方形网格 表 3 原位试验方案汇总表
Table 3 Summary of test plan
序号 材料仪器 测点深度/m 仪器型号 量程 精度 测点土层 1 沉降计 8 CJ-1000 1000 mm ±0.1 mm 淤泥土 2 沉降计 18 粉质黏土 3 孔压计 4 JMZX-55XXHAT 200 kPa ±0.1 kPa 淤泥土 4 孔压计 6 淤泥土 5 测斜管 0~15 JMZX7000 偏离垂直±30° ±0.1mm/m 淤泥土砂土粉质黏土 表 4 沉降观测数据分析汇总表
Table 4 Analysis of observed data of settlement
观测时间/d 累计填土厚度/m 左路肩地基土0~18 m 路中地基土0~18 m 路中地基土0~8 m 累计压缩量/mm 沉降速率/(mm·d-1) 累计压缩量/mm 沉降速率/(mm·d-1) 累计压缩量/mm 沉降速率/(mm·d-1) 0~23 0 0.5 0.02 0.2 0.01 0.2 0.01 24~42 0.5 1.4 0.05 6.9 0.38 31.0 1.71 43~62 2.5 78.9 4.07 105.0 5.16 116.3 4.27 63~81 3.0 112.9 1.88 153.7 2.70 178.6 3.46 82~145 3.5 135.9 0.37 182.9 0.46 200.4 0.34 146~163 4.5 149.4 0.79 198.3 0.91 219.6 1.13 164~260 5.5 243.6 0.98 362.2 1.71 337.7 1.23 表 5 地基沉降双曲线经验模型参数和固结度
Table 5 Parameters and consolidation degrees of hyperbolic empirical model for foundation settlement
测点位置/ 压缩层范围 双曲线模型参数 St=168d/mm St=260d/mm S∞/mm Ut=260d /% 工后沉降/mm α β 路基中/0~18 m 0.0993 0.0055 209 362 391 93 29 路基中/0~8 m 0.1070 0.0078 223 338 351 96 13 路基中/8~18 m — — — 24 40 61 16 表 6 超静孔隙水压力观测数据分析汇总表
Table 6 Analysis of observed data of excess-static pore water pressure
观测时间/d 填土高度/m 荷载增量/kPa 孔压 u /kPaΔu /kPaˉB=ΔuΔσ1 速率/(kPa·d-1) 荷载 孔压 ⑴ 0~42 0.5 8.75 2.3 2.3 0.26 0.21 0.05 ⑵ 43~62 2.5 35.0 27.9 25.6 0.73 1.84 1.34 ⑶ 63~81 3.0 8.75 18.5 -9.4 -1.07 0.49 -0.52 ⑷ 82~145 3.5 8.75 4.3 -14.2 -1.62 0.14 -0.23 ⑸ 146~163 4.5 17.5 23.4 19.1 1.09 1.02 1.12 ⑹ 164~168 5.5 17.5 36.4 13.0 0.74 4.38 3.25 ⑺ 168~260 5.5 0 9.6 -26.8 — 0.00 -0.29 表 7 模拟与实测累计沉降量对比表
Table 7 Comparison of simulated and measured progressive Accumulated settlements
测点位置 0~145 d累计沉降/mm 0~260 d累计沉降/mm 实测值 模拟值 实测值 模拟值 路基中0~8 m 182.9 197.8 337.7 332.5 路中0~18 m 200.4 209.9 362.2 358.5 路肩0~18 m 136.9 150.3 243.6 248.3 表 8 模拟与实测最大孔隙水压力对比表
Table 8 Comparison between simulated and measured maximum pore water pressures
测点位置/深度 0~14 5d最大孔压/kPa 145~260 d最大孔压/kPa 模拟值 实测值 模拟值 实测值 路基中心/6 m 25.93 27.92 35.92 36.40 表 9 数值模型采用的等效力学参数
Table 9 Equivalent mechanical parameters used in numerical model
材料 ρ/(g·cm-3) c/kPa φ/(°) E/MPa ν k/(m·d-1) k/(cm·s-1) 填土 1.75 15.0 20 20.0 0.22 4.3×10-4 4.98×10-6 碎石 2.30 0.1 40 4.5 0.30 15 1.7×10-2 淤泥质土① 1.56 8.0 11 2.7 0.33 9.53×10-5 1.1×10-7 淤泥质土② 1.70 11.0 16 5.8 0.28 1.43×10-4 1.7×10-7 淤泥质细砂 1.80 0.1 32 12.2 0.25 4.32×10-2 5.0×10-5 粉质黏土 1.90 13.0 18 8.6 0.25 8.01×10-4 9.3×10-7 砂井 2.12 5.0 30 1.2 0.25 20 2.3×10-2 钢筋 7.80 — — 2×105 0.31 — — 陀螺桩 2.40 — — 3×104 0.30 — — 表 10 累计沉降对比表
Table 10 Comparison of cumulative settlements
压缩层范围 0~145 d累计沉降/mm 0~260 d累计沉降/mm 陀螺桩Sa 砂垫层Sb Sa/Sb 陀螺桩Sa 砂垫层Sb Sa/Sb 路基中0~18 m 209.9 357.7 0.58 358.5 616.6 0.58 路基中0~8 m 197.8 347.0 0.57 332.5 598.0 0.56 路基中8~18 m 12.1 10.7 1.13 26.0 18.6 1.40 表 11 路中地基深度6 m处模拟孔压特征值
Table 11 Characteristic values of simulated pore pressure at depth of 6 m
模拟过程时段/d 荷载增量 Δσ1 /kPa陀螺桩孔压峰值 砂垫层孔压峰值 uaub ˉB=ΔuΔσ1 路基塑性区贯通状态 ua /kPaΔua /kPaub /kPaΔub /kPa陀螺桩 砂垫层 陀螺桩 砂垫层 ⑵ 43~63 35.0 27.9 24.8 32.9 29.9 0.85 0.71 0.85 无 无 ⑸ 146~163 17.5 23.1 20.1 25.8 24.1 0.90 1.14 1.37 无 发展 ⑹ 164~168 17.5 32.9 13.3 43.6 23.3 0.75 0.76 1.33 无 贯通 表 12 路基坡脚深层水平位移分布特征值
Table 12 Characteristic values of deep horizontal displacement distribution of subgrade slope foot
模拟加荷过程 匝道基底宽/m 最大位移点深/m 地基软土侧凸面积/m2 软土侧凸衍生沉降均值/mm 陀螺桩Aa 砂垫层Ab Aa/Ab 陀螺桩Da 砂垫层Db Da/Db 0~145 d 30 2.9 0.105 0.169 0.62 3.5 5.6 0.62 145~260 d 30 2.9 0.398 0.628 0.63 13.3 20.9 0.63 -
[1] SUSUMU Y, MOTOHIKO H, HIDEO N, et al. Effectiveness of top-shaped concrete blocks in preventing settlement of foundations in liquefied ground[J]. Soils and Foundations, 1994, 34(1): 65-76. doi: 10.3208/sandf1972.34.65
[2] SUSUMU Y, KENJI I, KENJI H, et al. Effect of soil improvement on ground subsidence due to liquefaction[J]. Soils and Foundations, 1996, 36(S0): 99-107.
[3] 李平, 荒井克彦, 横倉幹雄. こま型基礎工法の支持力と沈下に関する現場載荷試験[J]. 応用力学論文集, 2004(7): 543-552. LI Ping, KATSUHIKO Arai, Yokokura MIKIO. Full-scale loading tests for bearing capacity and settlement of top base method[J]. Papers on Applied Mechanics, 2004(7): 543-552. (in Japanese)
[4] 唐业清, 唐作华. 陀螺桩的原理及应用[J]. 探矿工程(岩土钻掘工程), 1995(5): 55-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC506.028.htm TANG Ye-qing, TANG Zuo-hua. The principle and application of gyro piles[J]. Prospecting Engineering (Rock and Soil Drilling Engineering), 1995(5): 55-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC506.028.htm
[5] 孙兴松. 陀螺桩基础应力与沉降特性研究[D]. 天津: 天津大学, 2007. SUN Xing-song. Research on the Stress and Settlement Characteristics of Gyro Pile Foundation[D]. Tianjin: Tianjin University, 2007. (in Chinese)
[6] 严驰, 孙兴松, 孙训海, 等. 陀螺桩地基土体应力分布有限元分析[J]. 港工技术, 2007(4): 43-45. doi: 10.3969/j.issn.1004-9592.2007.04.016 YAN Chi, SUN Xing-song, SUN Xun-hai, et al. Finite element analysis of the stress distribution of soil in gyro pile foundation[J]. Port Engineering Technology, 2007(4): 43-45. (in Chinese) doi: 10.3969/j.issn.1004-9592.2007.04.016
[7] 于志强. 加密塑料排水板真空联合堆载预压法在天津港南疆港区的应用[J]. 港口工程, 1996(2): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GKGC602.002.htm YU Zhi-qiang. The application of vacuum combined stacking preloading method of encrypted plastic drainage board in South Xinjiang Port Area of Tianjin Port[J]. Port Engineering, 1996(2): 19-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GKGC602.002.htm
[8] 刘吉福, 杨春林. 珠江三角洲地区竖向排水体施工扰动初探[J]. 岩石力学与工程学报, 2003, 22(1): 142-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200301027.htm LIU Ji-fu, YANG Chun-lin. Preliminary study on construction disturbance of vertical drainage in the Pearl River Delta[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 142-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200301027.htm
[9] 刘松玉, 朱志铎, 方磊, 等. 高速公路液化地基处理原则与方法[J]. 岩土工程学报, 2001, 23(2): 135-138, 182. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200102000.htm LIU Song-yu, ZHU Zhi-duo, FANG Lei, et al. Principles and methods for treatment of liquefied foundation of expressway[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 135-138, 182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200102000.htm
[10] 中华人民共和国交通部文件. 关于汕头至汾水公路(含潮州支线)初步设计的批复,交通部公路发(1997)888号[Z]. 北京: 中华人民共和国交通部, 1997. Documents of the Ministry of Communications of the People's Republic of China. Approval of the preliminary design of the Shantou-Fenshui Highway (including Chaozhou Branch), Ministry of Communications Highway No. (1997) 888[Z]. Beijing: Ministry of Communications of the People's Republic of China, 1997. (in Chinese)
[11] 高晖. ABAQUS在软基固结过程分析中的应用研究[D]. 武汉: 武汉理工大学, 2006. GAO Hui. Application of ABAQUS in the Analysis of the Consolidation Process of Soft Ground[D]. Wuhan: Wuhan University of Technology, 2006. (in Chinese)
[12] 王扶志, 张心剑. 陀螺桩在近海岸沙土基础中的应用[J]. 西部探矿工程, 2004(5): 176-177. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK200405079.htm WANG Fu-zhi, ZHANG Xin-jian. Application of gyro piles in sand foundation near the coast[J]. Western Prospecting Engineering, 2004(5): 176-177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK200405079.htm
[13] 蒋建清, 曹国辉, 刘热强. 排水板和砂井联合堆载预压加固海相软土地基的工作性状的现场试验[J]. 岩土力学, 2015, 36(增刊2): 551-558. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2078.htm JIANG Jian-qing, CAO Guo-hui, LIU Re-qiang. Field test of the working behavior of the combination of drainage plates and sand wells combined with preloading to strengthen marine soft ground[J]. Rock and Soil Mechanics, 2015, 36(S2): 551-558. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2078.htm
[14] 建筑地基处理技术规范:JGJ 79—2012[S]. 2012. Technical Specifications for Building Foundation Treatment: JGJ 79—2012[S]. 2012. (in Chinese)
[15] 曹杰, 郑建国, 刘智, 等. 真空预压法处理软土地基的工程应用[J]. 岩土工程学报, 2017, 39(增刊2): 124-127. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2032.htm CAO Jie, ZHENG Jian-guo, LIU Zhi, et al. Engineering application of vacuum preloading method to treat soft soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 124-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2032.htm
-
期刊类型引用(3)
1. 许莹莹,朱晨,孙枫,潘坤,潘晓东. 海相软土弹性剪切模量及静动力刚度弱化特性. 浙江工业大学学报. 2025(02): 131-137+144 . 百度学术
2. 肖汉清,赵斌,熊力,陈令,秦朗,刘杰. 往复荷载作用下滨海滩涂软基长期性能劣化机制试验研究. 河南科学. 2024(09): 1325-1333 . 百度学术
3. 王斌,韩幽铭,周欣,陈成,张先伟,桂蕾. 太湖湖相黏土层剪切模量衰减特性的原位测试研究. 岩土力学. 2021(07): 2031-2040 . 百度学术
其他类型引用(6)