• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

陀螺桩垫层加强袋装砂井排水地基现场试验

李国维, 余彦杰, 熊力, 吴建涛, 曹雪山

李国维, 余彦杰, 熊力, 吴建涛, 曹雪山. 陀螺桩垫层加强袋装砂井排水地基现场试验[J]. 岩土工程学报, 2021, 43(3): 425-431. DOI: 10.11779/CJGE202103004
引用本文: 李国维, 余彦杰, 熊力, 吴建涛, 曹雪山. 陀螺桩垫层加强袋装砂井排水地基现场试验[J]. 岩土工程学报, 2021, 43(3): 425-431. DOI: 10.11779/CJGE202103004
LI Guo-wei, YU Yan-jie, XIONG Li, WU Jiang-tao, CAO Xue-shan. Field tests on top-shaped concrete block cushion-reinforced soft soil foundation drained with sand bag well[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 425-431. DOI: 10.11779/CJGE202103004
Citation: LI Guo-wei, YU Yan-jie, XIONG Li, WU Jiang-tao, CAO Xue-shan. Field tests on top-shaped concrete block cushion-reinforced soft soil foundation drained with sand bag well[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 425-431. DOI: 10.11779/CJGE202103004

陀螺桩垫层加强袋装砂井排水地基现场试验  English Version

基金项目: 

国家自然科学基金项目 41272327

详细信息
    作者简介:

    李国维(1964— ),男,博士,研究员,主要从事软基路堤变形和高边坡稳定性等方面的教学与科研工作。E-mail:lgwnj@163.com

    通讯作者:

    吴建涛, E-mail: jiantao.wu@hhu.edu.cn

  • 中图分类号: TU441

Field tests on top-shaped concrete block cushion-reinforced soft soil foundation drained with sand bag well

  • 摘要: 常规袋装砂井排水的软土地基要求缓慢加荷因而占用了较多工期不利于工后沉降控制。为加快袋装砂井排水地基的加荷速率开展陀螺桩垫层加强袋装砂井排水地基现场试验。研究表明:陀螺桩垫层可以提高地基的整体稳定性,在快速加荷导致软土孔压系数B¯值大于1的条件下保持地基稳定;陀螺桩垫层降低了地基浅部高压缩性土层的压缩量,相对增大了软土层下无排水体土层的压缩量,抑制软土侧向变形的发展,降低工后沉降的速率;陀螺桩垫层降低了压缩层中的孔压峰值,使软土固结过程加快;相对于砂垫层陀螺桩垫层具有更大刚度,导致上部荷载在地基中产生的附加应力分布型式发生显著变化,使得袋装砂井排水地基的综合性状得到加强。
    Abstract: The soft soil foundation drained by the conventional sand bag wells requires slow loading, which occupies more construction period and is not conducive to post-construction settlement control. In order to accelerate the loading rate of the drainage foundation of sand bag wells, field tests on the top-shaped concrete blocks-reinforced drainage foundation of sand bag wells are conducted. The research shows that the top-shaped concrete blocks can improve the overall stability of the foundation, and keep the foundation stable under the condition that the rapid loading causes the value of the pore pressure coefficient B¯ of soft soil to be greater than 1. The top-shaped concrete blocks reduce the high-compressibility soil in the shallow part of the foundation. The compression of the layer relatively increases the compression of the undrained soil layer under the soft soil layer, inhibits the development of lateral deformation of the soft soil, and reduces the rate of post-construction settlement. The top-shaped concrete block layer reduces the pore pressure in the compression layer, and the peak value accelerates the consolidation process of soft soil. The top-shaped concrete blocks have greater rigidity than the sand cushions, resulting in a significant change in the type of additional stress distribution generated by the upper load in the foundation, leading to that the comprehensive behavior of the drainage sandbag ground is strengthened.
  • 图  1   铺设陀螺桩混凝土块

    Figure  1.   Laying top-shaped concrete blocks

    图  2   仪器埋设布置图

    Figure  2.   Layout of instrument embedment

    图  3   地基沉降时间曲线

    Figure  3.   Settlement-time curve of foundation

    图  4   双曲线法推算最终沉降量

    Figure  4.   Hyperbolic method for calculating final settlement

    图  5   路基中深度6 m处实测孔压时间曲线

    Figure  5.   Curve of measured pore pressure at a depth of 6 m in roadbed

    图  6   深层位移曲线

    Figure  6.   Curve of deep displacement

    图  7   模型视图

    Figure  7.   Model view

    图  8   模型剖面图

    Figure  8.   Model section

    图  9   路中地基0~18 m土层模拟沉降时间过程

    Figure  9.   Time histories of simulated settlement of soil layer of 0~18 m in foundation of road

    图  10   路中地基深度6 m处模拟孔压时间过程

    Figure  10.   Time histories of simulated pore pressure at depth of 6 m

    图  11   有无陀螺桩的路基边缘水平位移-深度的对比曲线

    Figure  11.   Comparative curves of horizontal displacement-depth of subgrade edge with or without top-shaped concrete block pile

    表  1   土层物理力学性质指标

    Table  1   Physical and mechanical properties of soil

    地层名称层厚/m含水率/%密度/(g·cm-3)孔隙比液限/%塑限/%压缩系数/MPa-1压缩模量/MPaqc/MPafs/kPa黏聚力c0/kPa内摩擦角φ0/(°)
    淤泥质土3.7551.561.758411.252.150.226.08.411
    淤泥质土4.0521.701.462450.763.120.4514.411.416
    淤泥质细砂7.7222.060.60.1312.122.6534.532
    粉质黏土4.6351.820.943300.218.851.8540.712.818
    下载: 导出CSV

    表  2   软土地基加固方案参数汇总表

    Table  2   Parameters of soft soil foundation reinforcement program

    加固措施直径/mm间距/m深度位置/m材料属性布置方式
    袋装砂井701.310聚丙烯编织布正三角形
    砂垫层中粗砂0.62.3×10-3 cm/d等厚
    陀螺桩5000.50.5C30砼正方形
    桩顶系筋120.5桩顶面HRB400正方形网格
    桩身系筋横筋20纵筋140.5桩顶下0.25HRB400正方形网格
    下载: 导出CSV

    表  3   原位试验方案汇总表

    Table  3   Summary of test plan

    序号材料仪器测点深度/m仪器型号量程精度测点土层
    1沉降计8CJ-10001000 mm±0.1 mm淤泥土
    2沉降计18粉质黏土
    3孔压计4JMZX-55XXHAT200 kPa±0.1 kPa淤泥土
    4孔压计6淤泥土
    5测斜管0~15JMZX7000偏离垂直±30°±0.1mm/m淤泥土砂土粉质黏土
    下载: 导出CSV

    表  4   沉降观测数据分析汇总表

    Table  4   Analysis of observed data of settlement

    观测时间/d累计填土厚度/m左路肩地基土0~18 m路中地基土0~18 m路中地基土0~8 m
    累计压缩量/mm沉降速率/(mm·d-1)累计压缩量/mm沉降速率/(mm·d-1)累计压缩量/mm沉降速率/(mm·d-1)
    0~2300.50.020.20.010.20.01
    24~420.51.40.056.90.3831.01.71
    43~622.578.94.07105.05.16116.34.27
    63~813.0112.91.88153.72.70178.63.46
    82~1453.5135.90.37182.90.46200.40.34
    146~1634.5149.40.79198.30.91219.61.13
    164~2605.5243.60.98362.21.71337.71.23
    下载: 导出CSV

    表  5   地基沉降双曲线经验模型参数和固结度

    Table  5   Parameters and consolidation degrees of hyperbolic empirical model for foundation settlement

    测点位置/ 压缩层范围双曲线模型参数St=168d/mmSt=260d/mmS/mmUt=260d /%工后沉降/mm
    αβ
    路基中/0~18 m0.09930.00552093623919329
    路基中/0~8 m0.10700.00782233383519613
    路基中/8~18 m24406116
    下载: 导出CSV

    表  6   超静孔隙水压力观测数据分析汇总表

    Table  6   Analysis of observed data of excess-static pore water pressure

    观测时间/d填土高度/m荷载增量/kPa孔压u/kPaΔu/kPaB¯=ΔuΔσ1速率/(kPa·d-1)
    荷载孔压
    0~420.58.752.32.30.260.210.05
    43~622.535.027.925.60.731.841.34
    63~813.08.7518.5-9.4-1.070.49-0.52
    82~1453.58.754.3-14.2-1.620.14-0.23
    146~1634.517.523.419.11.091.021.12
    164~1685.517.536.413.00.744.383.25
    168~2605.509.6-26.80.00-0.29
    下载: 导出CSV

    表  7   模拟与实测累计沉降量对比表

    Table  7   Comparison of simulated and measured progressive Accumulated settlements

    测点位置0~145 d累计沉降/mm0~260 d累计沉降/mm
    实测值模拟值实测值模拟值
    路基中0~8 m182.9197.8337.7332.5
    路中0~18 m200.4209.9362.2358.5
    路肩0~18 m136.9150.3243.6248.3
    下载: 导出CSV

    表  8   模拟与实测最大孔隙水压力对比表

    Table  8   Comparison between simulated and measured maximum pore water pressures

    测点位置/深度0~14 5d最大孔压/kPa145~260 d最大孔压/kPa
    模拟值实测值模拟值实测值
    路基中心/6 m25.9327.9235.9236.40
    下载: 导出CSV

    表  9   数值模型采用的等效力学参数

    Table  9   Equivalent mechanical parameters used in numerical model

    材料ρ/(g·cm-3)c/kPaφ/(°)E/MPaνk/(m·d-1)k/(cm·s-1)
    填土1.7515.02020.00.224.3×10-44.98×10-6
    碎石2.300.1404.50.30151.7×10-2
    淤泥质土①1.568.0112.70.339.53×10-51.1×10-7
    淤泥质土②1.7011.0165.80.281.43×10-41.7×10-7
    淤泥质细砂1.800.13212.20.254.32×10-25.0×10-5
    粉质黏土1.9013.0188.60.258.01×10-49.3×10-7
    砂井2.125.0301.20.25202.3×10-2
    钢筋7.802×1050.31
    陀螺桩2.403×1040.30
    下载: 导出CSV

    表  10   累计沉降对比表

    Table  10   Comparison of cumulative settlements

    压缩层范围0~145 d累计沉降/mm0~260 d累计沉降/mm
    陀螺桩Sa砂垫层SbSa/Sb陀螺桩Sa砂垫层SbSa/Sb
    路基中0~18 m209.9357.70.58358.5616.60.58
    路基中0~8 m197.8347.00.57332.5598.00.56
    路基中8~18 m12.110.71.1326.018.61.40
    下载: 导出CSV

    表  11   路中地基深度6 m处模拟孔压特征值

    Table  11   Characteristic values of simulated pore pressure at depth of 6 m

    模拟过程时段/d荷载增量Δσ1/kPa陀螺桩孔压峰值砂垫层孔压峰值uaubB¯=ΔuΔσ1路基塑性区贯通状态
    ua/kPaΔua/kPaub/kPaΔub/kPa陀螺桩砂垫层陀螺桩砂垫层
    43~6335.027.924.832.929.90.850.710.85
    146~16317.523.120.125.824.10.901.141.37发展
    164~16817.532.913.343.623.30.750.761.33贯通
    下载: 导出CSV

    表  12   路基坡脚深层水平位移分布特征值

    Table  12   Characteristic values of deep horizontal displacement distribution of subgrade slope foot

    模拟加荷过程匝道基底宽/m最大位移点深/m地基软土侧凸面积/m2软土侧凸衍生沉降均值/mm
    陀螺桩Aa砂垫层AbAa/Ab陀螺桩Da砂垫层DbDa/Db
    0~145 d302.90.1050.1690.623.55.60.62
    145~260 d302.90.3980.6280.6313.320.90.63
    下载: 导出CSV
  • [1]

    SUSUMU Y, MOTOHIKO H, HIDEO N, et al. Effectiveness of top-shaped concrete blocks in preventing settlement of foundations in liquefied ground[J]. Soils and Foundations, 1994, 34(1): 65-76. doi: 10.3208/sandf1972.34.65

    [2]

    SUSUMU Y, KENJI I, KENJI H, et al. Effect of soil improvement on ground subsidence due to liquefaction[J]. Soils and Foundations, 1996, 36(S0): 99-107.

    [3] 李平, 荒井克彦, 横倉幹雄. こま型基礎工法の支持力と沈下に関する現場載荷試験[J]. 応用力学論文集, 2004(7): 543-552.

    LI Ping, KATSUHIKO Arai, Yokokura MIKIO. Full-scale loading tests for bearing capacity and settlement of top base method[J]. Papers on Applied Mechanics, 2004(7): 543-552. (in Japanese)

    [4] 唐业清, 唐作华. 陀螺桩的原理及应用[J]. 探矿工程(岩土钻掘工程), 1995(5): 55-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC506.028.htm

    TANG Ye-qing, TANG Zuo-hua. The principle and application of gyro piles[J]. Prospecting Engineering (Rock and Soil Drilling Engineering), 1995(5): 55-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC506.028.htm

    [5] 孙兴松. 陀螺桩基础应力与沉降特性研究[D]. 天津: 天津大学, 2007.

    SUN Xing-song. Research on the Stress and Settlement Characteristics of Gyro Pile Foundation[D]. Tianjin: Tianjin University, 2007. (in Chinese)

    [6] 严驰, 孙兴松, 孙训海, 等. 陀螺桩地基土体应力分布有限元分析[J]. 港工技术, 2007(4): 43-45. doi: 10.3969/j.issn.1004-9592.2007.04.016

    YAN Chi, SUN Xing-song, SUN Xun-hai, et al. Finite element analysis of the stress distribution of soil in gyro pile foundation[J]. Port Engineering Technology, 2007(4): 43-45. (in Chinese) doi: 10.3969/j.issn.1004-9592.2007.04.016

    [7] 于志强. 加密塑料排水板真空联合堆载预压法在天津港南疆港区的应用[J]. 港口工程, 1996(2): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GKGC602.002.htm

    YU Zhi-qiang. The application of vacuum combined stacking preloading method of encrypted plastic drainage board in South Xinjiang Port Area of Tianjin Port[J]. Port Engineering, 1996(2): 19-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GKGC602.002.htm

    [8] 刘吉福, 杨春林. 珠江三角洲地区竖向排水体施工扰动初探[J]. 岩石力学与工程学报, 2003, 22(1): 142-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200301027.htm

    LIU Ji-fu, YANG Chun-lin. Preliminary study on construction disturbance of vertical drainage in the Pearl River Delta[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 142-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200301027.htm

    [9] 刘松玉, 朱志铎, 方磊, 等. 高速公路液化地基处理原则与方法[J]. 岩土工程学报, 2001, 23(2): 135-138, 182. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200102000.htm

    LIU Song-yu, ZHU Zhi-duo, FANG Lei, et al. Principles and methods for treatment of liquefied foundation of expressway[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 135-138, 182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200102000.htm

    [10] 中华人民共和国交通部文件. 关于汕头至汾水公路(含潮州支线)初步设计的批复,交通部公路发(1997)888号[Z]. 北京: 中华人民共和国交通部, 1997.

    Documents of the Ministry of Communications of the People's Republic of China. Approval of the preliminary design of the Shantou-Fenshui Highway (including Chaozhou Branch), Ministry of Communications Highway No. (1997) 888[Z]. Beijing: Ministry of Communications of the People's Republic of China, 1997. (in Chinese)

    [11] 高晖. ABAQUS在软基固结过程分析中的应用研究[D]. 武汉: 武汉理工大学, 2006.

    GAO Hui. Application of ABAQUS in the Analysis of the Consolidation Process of Soft Ground[D]. Wuhan: Wuhan University of Technology, 2006. (in Chinese)

    [12] 王扶志, 张心剑. 陀螺桩在近海岸沙土基础中的应用[J]. 西部探矿工程, 2004(5): 176-177. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK200405079.htm

    WANG Fu-zhi, ZHANG Xin-jian. Application of gyro piles in sand foundation near the coast[J]. Western Prospecting Engineering, 2004(5): 176-177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK200405079.htm

    [13] 蒋建清, 曹国辉, 刘热强. 排水板和砂井联合堆载预压加固海相软土地基的工作性状的现场试验[J]. 岩土力学, 2015, 36(增刊2): 551-558. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2078.htm

    JIANG Jian-qing, CAO Guo-hui, LIU Re-qiang. Field test of the working behavior of the combination of drainage plates and sand wells combined with preloading to strengthen marine soft ground[J]. Rock and Soil Mechanics, 2015, 36(S2): 551-558. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2078.htm

    [14] 建筑地基处理技术规范:JGJ 79—2012[S]. 2012.

    Technical Specifications for Building Foundation Treatment: JGJ 79—2012[S]. 2012. (in Chinese)

    [15] 曹杰, 郑建国, 刘智, 等. 真空预压法处理软土地基的工程应用[J]. 岩土工程学报, 2017, 39(增刊2): 124-127. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2032.htm

    CAO Jie, ZHENG Jian-guo, LIU Zhi, et al. Engineering application of vacuum preloading method to treat soft soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 124-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2032.htm

  • 期刊类型引用(8)

    1. 冯德銮,黎森宇,梁仕华. 水泥固化滨海软土动力特性研究进展与评述. 广东工业大学学报. 2024(02): 23-36 . 百度学术
    2. 王喆恺,谭慧明,陶小三. 应力路径对盐城粉质黏土动剪切模量影响试验研究. 中国港湾建设. 2024(08): 44-49+73 . 百度学术
    3. 苟乐宇,李飒,张先伟. 菌丝–砂复合轻质土的静力强度特性研究. 岩石力学与工程学报. 2024(10): 2590-2598 . 百度学术
    4. 杨海华,刘亮,刘汉龙,高鹏展,陈育民. 高聚物胶凝戈壁土的动模量及阻尼比试验研究. 振动与冲击. 2023(03): 12-20 . 百度学术
    5. 何俊,张驰,管家贤,吕晓龙. 碱渣固化疏浚淤泥的动变形特性研究. 岩石力学与工程学报. 2023(S1): 3712-3721 . 百度学术
    6. 郭鹏斐,侯天顺,刘茜,骆亚生. 直剪试验方法对轻量土抗剪强度的影响规律研究. 水利水电技术(中英文). 2023(04): 161-170 . 百度学术
    7. 杨凯旋,侯天顺,王琪,骆亚生. 剪切速率对EPS颗粒混合轻量土抗剪强度的影响规律研究. 水资源与水工程学报. 2022(05): 200-207 . 百度学术
    8. 侯天顺,郭鹏斐,杨凯旋,王琪,骆亚生. 发泡颗粒混合轻量土静止土压力特性及计算方法研究. 岩土工程学报. 2022(12): 2234-2244 . 本站查看

    其他类型引用(17)

图(11)  /  表(12)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  22
  • PDF下载量:  134
  • 被引次数: 25
出版历程
  • 收稿日期:  2020-06-14
  • 网络出版日期:  2022-12-04
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回