• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

金东大桥隧道锚现场模型试验及承载能力分析

余美万, 张奇华, 高利萍, 罗荣, 李玉婕, 王帅, 边智华

余美万, 张奇华, 高利萍, 罗荣, 李玉婕, 王帅, 边智华. 金东大桥隧道锚现场模型试验及承载能力分析[J]. 岩土工程学报, 2021, 43(2): 338-346. DOI: 10.11779/CJGE202102014
引用本文: 余美万, 张奇华, 高利萍, 罗荣, 李玉婕, 王帅, 边智华. 金东大桥隧道锚现场模型试验及承载能力分析[J]. 岩土工程学报, 2021, 43(2): 338-346. DOI: 10.11779/CJGE202102014
YU Mei-wan, ZHANG Qi-hua, GAO Li-ping, LUO Rong, LI Yu-jie, WANG Shuai, BIAN Zhi-hua. Field model tests and bearing capacity analysis of tunnel anchorage of Jindong Bridge[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 338-346. DOI: 10.11779/CJGE202102014
Citation: YU Mei-wan, ZHANG Qi-hua, GAO Li-ping, LUO Rong, LI Yu-jie, WANG Shuai, BIAN Zhi-hua. Field model tests and bearing capacity analysis of tunnel anchorage of Jindong Bridge[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 338-346. DOI: 10.11779/CJGE202102014

金东大桥隧道锚现场模型试验及承载能力分析  English Version

基金项目: 

国家自然科学基金青年基金项目 51409013

国家自然科学基金青年基金项目 42002276

湖北省自然科学基金项目 2019CFB258

详细信息
    作者简介:

    余美万(1970— ),男,高级工程师,主要从事工程岩体力学试验及测试工作。E-mail:yumw027@163.com

  • 中图分类号: TU43

Field model tests and bearing capacity analysis of tunnel anchorage of Jindong Bridge

  • 摘要: 金东大桥隧道锚建在复杂岩体地层中,尚无类似的工程经验借鉴,为分析该桥隧道锚承载能力,在实体锚上游侧山体边坡开挖模型试验洞,制作相似比1∶11的隧道锚模型,采用后推法进行模型试验,包括弹塑性阶段试验、蠕变试验和满负荷的超载试验,配套进行了岩体(石)物理力学性质试验、岩体声波测试。分析结果表明:模型锚岩体性状与实体锚基本接近,模型锚围岩声波低于实体锚,模型锚地层具有较好的地质代表性;模型锚至少在8倍设计荷载作用下变形处于近似弹性阶段,在6倍设计荷载长期作用下未出现蠕变现象,推断实体锚围岩的超载稳定系数>8,长期安全稳定系数>6,成果可为类似复杂围岩的工程设计提供参考。
    Abstract: Tunnel anchorage of Jindong Bridge is built in the complicated rock stratum, but there is no similar engineering experience for reference. In order to analyze the bearing capacity of tunnel anchorage of Jindong Bridge, a model test tunnel is excavated on the side slope of the mountain at the upstream side of the real anchorage to make a tunnel anchorage model of 1∶11; then, the backstepping method is adopted to conduct the model tests, including elastic-plastic stage tests, creep tests and full-load overload tests, as well as the supporting tests such as physical mechanical property tests on rock mass (rock block) and acoustic wave tests on rock mass. The test results show that the character of the model anchorage rock mass is basically the same as that of the real anchorage, the acoustic wave of the surrounding rock of the model anchorage is lower than that of the real anchorage, and the stratum of the model anchorage has a better geological representation. The model anchorage exhibits the approximate elastic deformation under the action of 8 times the design load, and there is no creep under the long-term action of 6 times the design load. It is deduced that the surrounding rock of the real tunnel anchorage has the overload stability coefficient of more than 8 and the long-term safety stability coefficient of more than 6. The results can be used as the reference for the engineering design of similar complicated surrounding rock.
  • 图  1   岩体波速分段统计直方图

    Figure  1.   Statistical histogram for subsection of wave velocity of rock mass

    图  2   模型锚布置图

    Figure  2.   Arrangement of model anchorage

    图  3   模型锚洞照片

    Figure  3.   Photos of model anchorage holes

    图  4   锚体与围岩前表面测点布置图

    Figure  4.   Arrangement of measuring points on front surface of anchorage and surrounding rock

    图  5   锚体与围岩内外测点布置图

    Figure  5.   Arrangement of internal and external measuring points of anchorage and surrounding rock

    图  6   1p荷载试验锚体应变-时间曲线

    Figure  6.   Anchorage strain-time curves of loading tests under 1p

    图  7   8p荷载试验锚体应变-时间曲线

    Figure  7.   Anchorage strain-time curves of loading tests under 8p

    图  8   1p~24.59p荷载试验锚体应变曲线

    Figure  8.   Anchorage load-strain curves of loading tests under 1p~24.59p

    图  9   1p~8p荷载试验测线变形曲线

    Figure  9.   Deformation curves at measuring points of loading tests under 1p~8p

    图  10   1p和3p荷载试验典型测点荷载-变形曲线

    Figure  10.   Load-strain curves at typical measuring points of loading tests under 1p and 3p

    图  11   5p8p荷载试验典型测点荷载-变形曲线

    Figure  11.   Load-strain curves at typical measuring points of loading tests under 5p and 8p

    图  12   锚体与围岩前表面及内部测点变形-时间曲线

    Figure  12.   Strain-time curves at measuring points of anchorage and surrounding rock

    图  13   锚体内部测点应变-时间曲线

    Figure  13.   Strain-time curves at internal measuring points of anchorage

    表  1   锚碇围岩岩性及主要物理力学参数

    Table  1   Lithology and primary physical and mechanical parameters of surrounding rock of anchorage

    洞别岩性名称天然块体密度/(g·cm-3)含水率/%孔隙率/%饱和单轴抗压强度/MPa软化系数泊松比抗拉强度/MPa岩体变形模量/ GPa 混凝土与岩体抗剪强度f, C/MPa
    抗剪断抗剪(摩擦)
    实体锚左锚洞粉砂质白云岩夹黑云母石英片岩2.64~2.930.10~0.300.69~3.8619.9~81.00.35~0.900.26~0.292.79~5.012.13~2.511.50, 1.281.15, 0.62
    2.740.171.9056.10.680.254.102.35
    实体锚右锚洞石英白云母片岩、含碳白云母石英片岩2.73~2.820.70~0.853.98~4.1116.8~21.00.73~0.830.20~0.251.49~2.110.49, 0.910.47, 0.47
    2.770.774.0418.70.760.231.81
    方解石黑云母变质细砂岩2.72~2.770.14~0.191.14~1.7152.2~53.30.64~0.810.22~0.263.44~4.600.74~1591.20, 1.361.08, 0.58
    2.730.161.4352.90.710.243.991.16
    模型洞含榴黑云角闪斜长片麻岩2.63~2.760.09~0.780.91~6.1129.8~58.50.44~0.870.21~0.263.55~4.83
    2.710.443.0642.10.730.254.15
    注:表中横线上数值为范围值,横线下数值为平均值。
    下载: 导出CSV

    表  2   1p~24.59p荷载试验模型锚与围岩测点变形最大值

    Table  2   Maximum deformations of anchorage and surrounding rock at measuring points of loading tests under 1p~8p

    荷载级别测线左侧测孔(测点)左锚中隔墙右锚右侧测孔(测点)
    K11K9K7K5K3K1ZMK0YMK2K4K6K8K10K12
    1pL077181120.52953.5364921.518141086
    L1  14.517.521 483748 1916.59
    L3   1718 3836.538 1712
    L5   1317 373430 18.59   
    3pL01123041611061411431368364302060
    L1  223652 144145142.5 55.5438
    L3   2548 188136173 5637
    L5   14.533 195119191 54.524   
    5pL03353100119177260342.5352337236188.5106764224
    L1  89115144 352352358 18513148
    L3  8086129 408336.5410 16812129
    L5   65116 436342439 14579   
    8pL0561092012653855857307196994993892301575933
    L1  159228295 750744737 39226391
    L3  157175272 831718826 35226420
    L5   121228 871717881 286159   
    24.59 pL0~ L584513031980 4030477052094940523037903790 1860830442
    下载: 导出CSV

    表  3   1p~8p荷载试验锚体与围岩测点变形残余量

    Table  3   Residual deformations point of anchorage and surrounding rock at measuring points of loading tests under 1p~8p  (μm)

    荷载K3-1K3-2K3-3K3-4K1ZM1ZM2ZM3ZM4K0-1K0-2K0-3K0-4YM1YM2YM3YM4K2K4-1K4-2K4-3K4-4
    1p20.51314141931.5312332192731.5233934322317.516181215.5
    3p59249109201016556105.5865110.505
    5p95221012.52221201913171915212119170.512218
    8p26100443340413534303646284235362720101
    下载: 导出CSV

    表  4   1p~8p荷载试验位错计及测缝计测点最大值及残余量

    Table  4   Maximum values and residual volumes at measuring points by dislocation meter and jointmeter of loading tests undr 1p~8p (μm)

    荷载级别测点编号1p3p5p8p
    WC3WC7CF2CF3WC3WC7CF2CF3WC3WC7CF2CF3WC3WC7CF2CF3
    最大值3.95005.617.253.451.682.814.224.622.2511.2518.962.311.6814
    残余量1.58005.65.7501.681.1202.312.257.256.32.311.680
    下载: 导出CSV
  • [1] 夏才初, 程鸿鑫, 李荣强. 广东虎门大桥东锚碇现场结构模型试验研究[J]. 岩石力学与工程学报, 1997, 16(6): 571-576. doi: 10.3321/j.issn:1000-6915.1997.06.010

    XIA Cai-chu, CHENG Hong-xin, LI Rong-qiang. Testing study on field structure model of the east anchorage of Guangdong Humen Bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(6): 571-576. (in Chinese) doi: 10.3321/j.issn:1000-6915.1997.06.010

    [2] 肖本职, 吴相超, 彭朝全. 重庆鹅公岩大桥隧道锚围岩稳定性[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5591-5597. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2057.htm

    XIAO Ben-zhi, WU Xiang-chao, PENG Chao-quan. Stability of the anchorage wall rock of tunnel for Chongqing Egongyan bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S2): 5591-5597. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2057.htm

    [3] 邬爱清, 彭元诚, 黄正加, 等. 超大跨度悬索桥隧道锚承载特性的岩石力学综合研究[J]. 岩石力学与工程学报, 2010, 29(3): 433-441. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003003.htm

    WU Ai-qing, PENG Yuan-cheng, HUANG Zheng-jia, et al. Rock mechanics comprehensive study of bearing capacity characteristics of tunnel anchorage for super-large span suspension bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 433-441. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003003.htm

    [4] 胡波, 曾钱帮, 饶旦, 等. 锚碇-围岩系统在拉剪复合应力条件下的变形规律及破坏机制研究-以坝陵河特大岩锚悬索桥为例[J]. 岩石力学与工程学报, 2007, 26(4): 712-719. doi: 10.3321/j.issn:1000-6915.2007.04.008

    HU Bo, ZENG Qian-bang, RAO Dan, et al. Study of deformation law and failure mechanism of anchorage-surrounding rock system under tensile-shear complex stresses -taking super-large suspension bridge on Baling river for example[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 712-719. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.04.008

    [5] 张奇华, 余美万, 喻正富, 等. 普立特大桥隧道锚现场模型试验研究-抗拔能力试验[J]. 岩石力学与工程学报, 2015, 34(1): 93-103. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501010.htm

    ZHANG Qi-hua, YU Mei-wan, YU Zheng-fu, et al. Field model tests on pullout capacity of tunnel-type anchorages of Puli bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 93-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501010.htm

    [6] 蒋昱州, 王瑞红, 朱杰兵, 等. 伍家岗大桥隧道锚三维地质力学模型试验研究[J]. 岩石力学与工程学报, 2016, 35(增刊2): 4103-4113. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2071.htm

    JIANG Yu-zhou, WANG Rui-hong, ZHU Jie-bing. Geomechanical model test on global stability for Wujiagang bridge tunnel-type anchorages[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4103-4113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2071.htm

    [7] 张宜虎, 邬爱清, 周火明, 等. 悬索桥隧道锚承载能力和变形特征研究综述[J]. 岩土力学, 2019, 40(9): 3576-3584. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909031.htm

    ZHANG Yi-hu, WU Ai-qing, ZHOU Huo-ming, et al. Review of bearing capacity and deformation characteristics of tunneltype anchorage for suspension bridge[J]. Rockand Soil Mechanics, 2019, 40(9): 3576-3584. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909031.htm

    [8] 江南, 冯君. 铁路悬索桥隧道锚受载破裂力学行为研究[J]. 岩石力学与工程学报, 2018, 37(7): 1665-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201807010.htm

    JIANG Nan, FENG Jun. Damage behavior of tunnel-type anchorages of railway suspension bridges under loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1659-1670. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201807010.htm

    [9] 李栋梁, 刘新荣, 吴相超, 等. 浅埋软岩隧道式锚碇稳定性原位模试验研究[J]. 岩土工程学报, 2017, 39(11): 2078-2087. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201711018.htm

    LI Dong-liang, LIU Xin-rong, WU Xiang-chao, et al. Stability of shallow buried soft rock tunnel anchorage by in-situ model test[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2078-2087. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201711018.htm

    [10] 公路悬索桥设计规范:JTG/T D65-05--2015[S]. 北京: 人民交通出版社, 2015.

    Specification of design for highway suspension bridge: JTG/TD65-05--2015[S]. Beijing: China Communications Press, 2015. (in Chinese)

    [11] 廖明进, 王全才, 袁从华, 等. 基于楔形效应的隧道锚抗拔承载能力研究[J]. 岩土力学, 2016, 37(1): 185-192, 202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601023.htm

    LIAO Ming-jin, WANG Quan-cai, YUAN Cong-hua, et al. Research on the pull-out capacity of the tunnel-type anchorage basedon wedge-effect[J]. Rock and Soil Mechanics, 2016, 37(1): 186-192, 202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601023.htm

    [12] 江南, 黄林, 冯君, 等. 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009, 1047. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003031.htm

    JIANG Nan, HUANG Ling, FENG Jun, et al. Research on design and calculation method of tunnel-type anchorage of railway suspension bridge[J]. Rockand Soil Mechanics, 2020, 41(3): 999-1009, 1047. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003031.htm

    [13] 张奇华, 李玉婕, 余美万, 等. 隧道锚围岩抗拔机制及抗拔力计算模式初步研究[J]. 岩土力学, 2017, 38(3): 810-820. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703025.htm

    ZHANG Qi-hua, LI Yu-jie, YU Mei-wan, et al. Preliminary study on pullout mechanisms and computational mode of pullout force for rocks surrounding tunnel-type anchorage[J]. Rockand Soil Mechanics, 2017, 38(3): 810-820. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703025.htm

图(13)  /  表(4)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  24
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-22
  • 修回日期:  2020-05-28
  • 网络出版日期:  2022-12-04
  • 刊出日期:  2021-01-31

目录

    /

    返回文章
    返回