Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高岭土微粒固载成核微生物固化粗砂强度

马国梁, 何想, 路桦铭, 吴焕然, 刘汉龙, 楚剑, 肖杨

马国梁, 何想, 路桦铭, 吴焕然, 刘汉龙, 楚剑, 肖杨. 高岭土微粒固载成核微生物固化粗砂强度[J]. 岩土工程学报, 2021, 43(2): 290-299. DOI: 10.11779/CJGE202102009
引用本文: 马国梁, 何想, 路桦铭, 吴焕然, 刘汉龙, 楚剑, 肖杨. 高岭土微粒固载成核微生物固化粗砂强度[J]. 岩土工程学报, 2021, 43(2): 290-299. DOI: 10.11779/CJGE202102009
MA Guo-liang, HE Xiang, LU Hua-ming, WU Huan-ran, LIU Han-long, CHU Jian, XIAO Yang. Strength of biocemented coarse sand with kaolin micro-particle improved nucleation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 290-299. DOI: 10.11779/CJGE202102009
Citation: MA Guo-liang, HE Xiang, LU Hua-ming, WU Huan-ran, LIU Han-long, CHU Jian, XIAO Yang. Strength of biocemented coarse sand with kaolin micro-particle improved nucleation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 290-299. DOI: 10.11779/CJGE202102009

高岭土微粒固载成核微生物固化粗砂强度  English Version

基金项目: 

国家自然科学基金项目 51922024

中央高校基本科研业务费项目 2019CDQYTM031

重庆市研究生科研创新项目 CYB19012

详细信息
    作者简介:

    马国梁(1990— ),男,博士研究生,主要从事微生物土加固机理方面的研究工作。E-mail:magl09@163.com

    通讯作者:

    肖杨, E-mail: hhuxyanson@163.com

  • 中图分类号: TU43

Strength of biocemented coarse sand with kaolin micro-particle improved nucleation

  • 摘要: 提出一种基于微粒固载成核的微生物固化技术(MICPMPIN),用于改善微生物诱导碳酸钙沉淀(MICP)固化粗砂的力学特性,即在灌浆前给菌液中加入一定量的高岭土形成微生物固载胶体,然后将微生物固载胶体与反应液混合形成MICP浆体(MICPCS),利用自重渗流法加固粗砂。试验结果表明新型MICPMPIN固化粗砂的强度比传统MICP固化粗砂的强度高。其他条件相同时,MICPMPIN固化粗砂的强度随高岭土掺量的增加而增加,随微生物固载胶体含量的增大而增加,且每间隔1次灌入MICPCS时固化粗砂的强度较高。高岭土本身提供的胶结强度不能使砂柱成型,可忽略不计,其作用主要是辅助成核,增加有效碳酸钙沉淀量,并减小试样孔隙比从而增强固化粗砂的效果。MICPMPIN固化粗砂的湿强度也大于传统MICP固化粗砂的湿强度,且高岭土的掺入显著增强了固化粗砂的抗软化能力。
    Abstract: A new treatment, microbially induced calcium carbonate precipitation (MICP) with micro-particle improved nucleation (MICPMPIN), is introduced to improve the performance of MICP technology for the stabilization of coarse sand. A certain amount of kaolin is augmented into the bacterial suspensions to obtain immobilized bacterial slurry, then the bacterial slurry is mixed with cementation solution to form MICP-clay slurry (MICPCS) and percolated through the coarse-sand specimens under gravity. The results show that the unconfined compressive strength (UCS) of MICPMPIN-treated specimens is higher than that of MICP-treated ones. When other conditions are the same, the UCS increases with the increasing dosage of kaolin and volume ratio of immobilized bacterial slurry. The specimens with higher UCS can be obtained by grouting MICPCS every two cycles. The cementation of pure kaolin is so small that the stabilized specimen cannot be a solid. The main contribution for the higher UCS of kaolin is the nucleation that is formed by kaolin, the increment in the amount of effective precipitates, and the decrement in the amount of pore. The wet UCS of the MICPMPIN-treated specimens is larger than that of the conventional MICP treated ones, and the softening resistance is also improved by adding kaolin into the MICP process.
  • 灌注桩具有地质适应性强、承载力高等特点,是目前工程建设中最主要的基础形式,广泛应用在桥梁工程中[1-5]。在桥梁服役过程中,由于环境和外部荷载作用,桥梁桩基水下部分会出现混凝土剥落、破损、断裂等质量问题[6-8],三维成像声呐技术能够直观准确的识别桩基水下及泥面以上部分的结构病害情况,因此基于三维成像声呐的水下试验和点云数据处理技术研究对确保整个桩基工程的质量和安全具有重要意义[9-10]。目前三维成像声呐的研究基本上处于设备硬件研发和实际应用的范围,尚缺少“模型试验-数据处理-工程应用”系统性的研究,本文基于三维声呐点云的模型试验,进行了水下目标物缺陷识别、尺寸测量以及点云数据后处理方法研究和桥梁桩基现场试验,充分验证了三维成像声呐在桥梁桩基水下部分检测的适用性,为该技术应用于水下结构检测提供了参考。

    试验由美国BlueView公司研制开发三维成像声呐系统对点云数据进行采集,系统硬件部分包括声呐发生器、云台、三角支架、计算机等组成。

    试验共设计3个试件,圆柱体混凝土试块2个,带缺陷圆柱体木质试件1个,试件尺寸见表1。试验主要研究三维成像声呐对水下不同材质、不同尺寸、以及不同缺陷结构形式的识别和测量效果。

    表  1  试件尺寸参数
    Table  1.  Size parameters of specimens
    序号试件编号形状材质尺寸r×h/cm备注
    1WSC - #1圆柱体混凝土2.5×10.0
    2WSC -#25.0×15.0
    3WSW-#3木质15×100.0带缺陷
    下载: 导出CSV 
    | 显示表格

    为减少环境对声呐数据采集造成影响,选择在平面尺寸为21 m×50 m,深度1.8 m的水池中进行声呐试验,并在试验目标物底下垫上粗糙多孔的防滑垫,目的在于减少声波在瓷砖表面发生较强反射,从而获得更加准确的数据。

    试验通过三维成像声呐发射固定频率声波波束,在触及目标物后接收到反射声波,从而获得目标物的外形轮廓坐标数据,最后生成点云图像。由于外部环境影响,原始点云图像存在较多的噪点,如图1所示。

    图  1  试件点云原始数据
    Figure  1.  Original data of point cloud of specimens

    为了更好的分析三维成像声呐对水下结构的识别和测量效果,本文提出了数据后处理方案:①人工删减原始数据,去除大面积噪点;②对单次采集点云数据进行滤波处理,对原始数据进行压缩并去除离散点;③对处理后的图像进行尺寸测量。

    本文根据点云噪声特征进行不同的滤波处理。

    (1)半径滤波通过统计一定半径区域内点的个数来去除离散点。可依据点云的不同特征定义多种条件,定义条件为点在x,yz维度下的取值同时满足某个值域,则可以在指定3D空间内对点云进行裁剪。假设有n个点云,对这部分点云进行半径滤波。设定近邻点数量为k,半径为r。然后遍历每一个点云。i=1,2,…,n。以第i个点云为圆心,在其r半径内,若有k个点云,则该第i个点云将被保留;若其r半径内,点云个数少于k个,则该第i个点云将被去除。

    (2)体素滤波主要对点云数据进行压缩,在保证点云图像主体结构不变的情况下减少点的数量。用于密集型点云的预处理中,以加快后续配准、重建等操作的执行速度。

    (3)高斯统计滤波是最常用的滤波处理方式,通过统计某个点于相邻点之间的平均距离来去除离散点。设定去除离散噪点前的点云集合为A={ai,i=1,2,n},去除噪声后点云集合A={ai,i=1,2,m}。用bi表示ai到邻域中k个点的平均距离。算法中A所有点到其各自邻域的平均距离服从高斯分布且形状由均值和标准差决定。令所估计点平均距离a为其标准差,则记为S(μ,σ),且有如下公式:

    μ=ni=1Sin, (1)
    σ=ni=1(Siμ)2n (2)

    所有位于(μ-std×σ,μ+std×σ)范围外的点即可认为是大尺度噪声点,设k值为估算平均距离的邻域点大小,标准差倍数控制筛选阈值。设目标点坐标为(Xm,Ym,Zm),领域内某点N坐标为(Xn,Yn,Zn),则

    SN=(Xm+Xn)2+(Ym+Yn)2+(Zm+Zn)2, (3)
    ˉs =Kn=1SNk (4)

    SN服从一个位置参数μ、尺度参数为σ的概率分布,且其概率密度函数为

    f(SN)=12πσexp((SNμ)22σ2), (5)
    Smax=(ˉs)+nσstd, (6)

    式中,std为标准差倍数阈值。

    对点云原始数据进行大面积噪点人工删减后再经上述滤波处理得到图2所示点云图像,点云图像能够清晰反映设备扫描侧的形状轮廓。

    图  2  原始数据经滤波处理后点云图像
    Figure  2.  Point cloud images of original data after filtering

    点云滤波处理后,对点云图像进行切面处理,选择一个剖面测量试件尺寸。对试件WSC - #1、WSC - #2两个试件进行尺寸测量,如图3所示,经滤波处理后对点云图像进行测量,测得圆柱高度分别为15,10 cm与试件实际尺寸基本吻合,由于测量过程存在主观因素影响,试验结果存在一定误差,但误差能够保持在厘米级,完全满足工程应用需求。

    图  3  试件WSC - #1及WSC - #2尺寸测量
    Figure  3.  Dimensional measurements of WSC - #1 and WSC - #2

    对带缺陷圆柱体木桩WSW-#3试件的高度和缺陷尺寸进行测量,试件及缺陷尺寸如图4所示。

    图  4  WSW -#3试件模型及缺陷尺寸
    Figure  4.  Model and defect sizes of WSW - #3

    为方便试件点云图像尺寸测量,将桩的点云图旋转90°,右侧为桩底,左侧为桩顶,下侧为缺陷侧,尺寸测量如图5所示,测量结果见表2

    图  5  试件WSW-#3尺寸测量
    Figure  5.  Measurements of specimen sizes of WSW-#3
    表  2  缺陷圆柱试件尺寸测量数据
    Table  2.  Measured data of defective specimens
    序号位置实际尺寸测量尺寸误差
    1下部缺陷宽度10100
    2下部缺陷深度541
    3缺陷距离30291
    4上部缺陷宽度532
    5上部缺陷深度10111
    下载: 导出CSV 
    | 显示表格

    测量结果表明:点云图像能够清晰显示缺陷位置,对数据后处理后的点云图像进行测量,试件各个部位测量尺寸与实际尺寸误差在2 cm以内,满足实际工程测量精度需求。

    某高速桥梁左幅建成于1994年,桥梁下部结构为桩柱式桥台,桩柱式桥墩,墩柱直径1.0 m,桩基直径1.2 m。现场采用声学可视化检测技术对水下结构进行检测,并在检测完成后进行抽水验证。

    选取其中一根桩基进行声纳扫测分析,原始点云数据如图所示,进行大面积噪点人工删减和软件滤波处理后,得到点云图像如图所示,数据后处理后的点云图像能够清晰显示桩基轮廓。对点云图像断面进行测量,桩基础部分点云断面缩小,结合设计图纸判断该桩基存在混凝土大面积剥落现象。

    为测得混凝土剥落厚度和长度,选取桩基竖向断面并对点云图像3个不同位置进行测量,如图6所示,测得剥落厚度为0.12,0.18,0.11 m,平均值为0.14 m;剥落长度为0.93,0.94,0.97 m,平均值为0.95 m。

    图  6  桥梁桩基三维成像声呐数据处理
    Figure  6.  Data processing of bridge pile foundation

    为验证声呐数据的测量精确度,在抽水后采用人工进行测量,现场实测混凝土剥落厚度分别为0.15,0.16,0.14 m,平均值为0.15 m;剥落长度分别为1.01,0.99,0.95 m,平均值为0.98 m,现场实测照片如图7所示。

    图  7  桥梁桩基水下结构病害现场测量
    Figure  7.  Field measurements of bridge pile foundation

    通过对比声呐与人工测量数据,两种方法测量混凝土剥落厚度平均值误差在1 cm,剥落长度平均值误差在3 cm,基本满足桥梁检测现场检测需求。

    (1)三维成像声呐扫测原始数据存在较多噪点,在经过滤波处理后,能够清晰呈现目标物部分外形轮廓,保留目标物几何信息,并能够较好识别试件缺陷。

    (2)对滤波处理后的点云图像尺寸测量结果准确,其中混凝土试件高度测量尺寸与实际基本吻合,带缺陷木桩试件部位尺寸在低于5 cm时,误差较大,尺寸大于10 cm误差较小,整体误差保持在2 cm以内。

    (3)三维成像声呐应用于桥梁桩基水下部分的外观完整性检测效果较好,能够直观呈现桩基外观特征,识别桩基外观缺陷。

    (4)经过将三维成像声呐的测试数据与现场测量数据对比,三维成像声呐能够较准确测量桩基混凝土剥落厚度,误差在3 cm内,满足工程检测需求。

  • 图  1   试验材料

    Figure  1.   Test materials

    图  2   制样模具

    Figure  2.   Moulds for preparating specimens

    图  3   MICPMPIN固化粗砂试样的无侧限抗压强度

    Figure  3.   UCS of MICPMPIN-treated coarse sand specimens

    图  4   碳酸钙沉淀量及沉淀效率

    Figure  4.   CaCO3 contents and precipitation efficiency

    图  5   MICPMPIN固化粗砂高岭土沉淀量

    Figure  5.   Kaolin contents of MICPMPIN-treated specimens

    图  6   高岭土及碳酸钙沿试样高度分布(间隔1次注入MICPCS,微生物固载胶体含量1/2)

    Figure  6.   Distribution of kaolin and CaCO3 along height of specimens (injecting MICPCS with 1/2 immobilized bacterial slurry every 2 times)

    图  7   MICPMPIN固化粗砂试样(间隔1次注入MICPCS,微生物固载胶体含量1/2)的微观结构及其物质组成

    Figure  7.   Microstructure and chemical composition of MICPMPIN-treated coarse-sand specimens (injecting MICPCS with 1/2 immobilized bacterial slurry every 2 times)

    图  8   高岭土沉淀量对无侧限抗压强度的影响

    Figure  8.   Effects of kaolin content on UCS

    图  9   菌液浓度对无侧限抗压强度的影响

    Figure  9.   Effects of bacterial density on UCS

    图  10   高岭土固化试样

    Figure  10.   Kaolin-stabilized specimens

    图  11   浸泡对MICPMPIN固化粗砂强度的影响

    Figure  11.   Effects of immersion on UCS of MICPMPIN-stabilized coarse sand

    表  1   MICPCS参数

    Table  1   Parameters of MICP-clay slurry

    微生物固载胶体含量微生物固载胶体体积/mL反应液体积/mL反应液浓度/(mol·L-1)MICP浆体浓度/(mol·L-1)
    1/225.025.02.001.00
    1/412.537.51.341.00
    1/105.045.01.111.00
    下载: 导出CSV

    表  2   MICPMPIN加固粗砂试验设计

    Table  2   Test design for stabilizing coarse sand by MICPMPIN

    间隔次数高岭土质量浓度/(g·L-1)
    0102040100
    0
    1
    3
    下载: 导出CSV
  • [1] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm

    HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm

    [2]

    DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210. doi: 10.1016/j.ecoleng.2008.12.029

    [3]

    XIAO Y, CHEN H, STUEDLEIN A W, et al. Restraint of particle breakage by biotreatment method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020123. doi: 10.1061/(ASCE)GT.1943-5606.0002384

    [4] 刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm

    LIU Han-long, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environme- ntal Engineering, 2019, 41(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm

    [5] 钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506003.htm

    QIAN Chun-xiang, WANG An-hui, WANG Xin. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506003.htm

    [6] 彭劼, 冯清鹏, 孙益成. 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40(6): 1048-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806012.htm

    PENG Jie, FENG Qing-peng, SUN Yi-cheng. Influences of temperatures on MICP-treated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1048-1055. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806012.htm

    [7] 孙潇昊, 缪林昌, 吴林玉, 等. 低温条件微生物MICP沉淀产率试验研究[J]. 岩土工程学报, 2019, 41(6): 1133-1138.

    SUN Xiao-hao, MIAO Lin-chang, WU Lin-yu, et al. Experimental study on precipitation rate of MICP under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1133-1138. (in Chinese)

    [8] 王旭民, 郭伟, 余飞, 等. 营养盐浓度对胶结砂物理力学特性试验研究[J]. 岩土力学, 2016, 37(增刊2): 363-374. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2046.htm

    WANG Xu-ming, GUO Wei, YU Fei, et al. Experimental study of effect of nutrient concentration on physico-mechanical properties of cemented sand[J]. Rock and Soil Mechanics, 2016, 37(S2): 363-374. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2046.htm

    [9] 程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm

    CHENG Xiao-hui, MA Qiang, YANG Zuan, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm

    [10] 张鑫磊, 陈育民, 张喆, 等. 微生物灌浆加固可液化钙质砂地基的振动台试验研究[J]. 岩土工程学报, 2020, 42(6): 1023-1031. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm

    ZHANG Xin-lei, CHEN Yu-min, ZHANG Zhe, et al. Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1023-1031. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm

    [11] 马瑞男, 郭红仙, 程晓辉, 等. 微生物拌和加固钙质砂渗透特性试验研究[J]. 岩土力学, 2018, 39(增刊2): 217-223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2031.htm

    MA Rui-nan, GUO Hong-xian, CHENG Xiao-hui, et al. Permeability experiment study of calcareous sand treated by microbially induced carbonate precipitation using mixing methods[J]. Rock and Soil Mechanics, 2018, 39(S2): 217-223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2031.htm

    [12] 李贤, 汪时机, 何丙辉, 等. 土体适用MICP 技术的渗透特性条件研究[J]. 岩土力学, 2019, 40(8): 2956-2974. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908010.htm

    LI Xian, WANG Shi-ji, HE Bing-hui, et al. Permeability condition of soil suitable for MICP method[J]. Rock and Soil Mechanics, 2019, 40(8): 2956-2974. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908010.htm

    [13] 支永艳, 邓华锋, 肖瑶, 等. 微生物灌浆加固裂隙岩体的渗流特性分析[J]. 岩土力学, 2019, 40(增刊1): 237-244. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1036.htm

    ZHI Yong-yan, DENG Hua-feng, XIAO Yao, et al. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting[J]. Rock and Soil Mechanics, 2019, 40(S1): 237-244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1036.htm

    [14] 李驰, 王硕, 王燕星, 等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm

    LI Chi, WANG Shuo, WANG Yan-xing, et al. Field experimental study on stability of bio-mineralization crust in the desert[J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm

    [15] 欧孝夺, 莫鹏, 江杰, 等. 生石灰与微生物共同固化过湿性铝尾黏土试验研究[J]. 岩土工程学报, 2020, 42(4): 624-631. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004007.htm

    OU Xiao-duo, MO Peng, JIANG Jie, et al. Experimental study on solidification of bauxite tailing clay with quicklime and microorganism[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 624-631. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004007.htm

    [16] 刘士雨, 俞缙, 韩亮, 等. 三合土表面微生物诱导碳酸钙沉淀耐水性试验研究[J]. 岩石力学与工程学报, 2019, 38(8): 1718-1728. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201908022.htm

    LIU Shi-yu, YU Jin, HAN Liang, et al. Experimental study on water resistance of tabia surface with microbially induced carbonate precipitation[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1718-1728. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201908022.htm

    [17] 黄明, 张瑾璇, 靳贵晓, 等. 残积土 MICP 灌浆结石体冻融损伤的核磁共振特性试验研究[J]. 岩石力学与工程学报, 2018, 37(12): 2846-2855. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201812020.htm

    HUANG Ming, ZHANG Jin-xuan, JIN Gui-xiao, et al. Magnetic resonance image experiments on the damage feature of microbial induced calcite precipitated residual soil during freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2846-2855. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201812020.htm

    [18] 彭劼, 温智力, 刘志明, 等. 微生物诱导碳酸钙沉积加固有机质黏土的试验研究[J]. 岩土工程学报, 2019, 41(4): 733-740. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904022.htm

    PENG Jie, WEN Zhi-li, LIU Zhi-ming, et al. Experimental research on MICP-treated organic clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 733-740. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904022.htm

    [19] 桂跃, 吴承坤, 刘颖伸, 等. 利用微生物技术改良泥炭土工程性质试验研究[J]. 岩土工程学报, 2020, 42(2): 269-278. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002011.htm

    GUI Yue, WU Cheng-kun, LIU Ying-shen, et al. Improving engineering properties of peaty soil by biogeotechnology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 269-278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002011.htm

    [20]

    HOLTZ R D, KOVACS W D. An Introduction to Geotechnical Engineering[M]. Englewood Cliffs: Prentice-Hall, 1983.

    [21]

    AMARAKOON G G N N, KAWASAKI S. Factors Affecting the Improvement of Sand Properties Treated with Microbially-Induced Calcite Precipitation[C]//Geo-Chicago, 2016, Chicago.

    [22] 崔明娟, 郑俊杰, 赖汉江. 颗粒粒径对微生物固化砂土强度影响的试验研究[J]. 岩土力学, 2016, 37(增刊2): 397-402. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2051.htm

    CUI Ming-juan, ZHENG Jun-jie, LAI Han-jiang. Experimental study of effect of particle size on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2016, 37(S2): 397-402. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2051.htm

    [23]

    MWANDIRA W, NAKASHIMA K, KAWASAKI S. Bioremediation of lead-contaminated mine waste by pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand[J]. Ecological Engineering, 2017, 109: 57-64.

    [24]

    HOANG T, ALLEMAN J, CETIN B, et al. Engineering properties of biocementation coarse- and fine-grained sand catalyzed by bacterial cells and bacterial enzyme[J]. Journal of Materials in Civil Engineering, 2020, 32(4): 04020030.

    [25]

    MAHAWISH A, BOUAZZA A, GATES W P. Effect of particle size distribution on the bio-cementation of coarse aggregates[J]. Acta Geotechnica, 2018, 13(4): 1019-1025.

    [26]

    REBATA-LANDA V. Microbial Activity in Sediments: Effects on Soil Behavior[D]. Atlanta: Civil and Environmental Engineering, Georgia Institute of Technology, 2007.

    [27] 尹黎阳, 唐朝生, 谢约翰, 等. 微生物矿化作用改善岩土材料性能的影响因素[J]. 岩土力学, 2019, 40(7): 2525-2546. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907007.htm

    YING Li-yang, TANG Chao-sheng, XIE Yue-han, et al. Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation[J]. Rock and Soil Mechanics, 2019, 40(7): 2525-2546. (In Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907007.htm

    [28]

    PAN X, CHU J, YANG Y, et al. A new biogrouting method for fine to coarse sand[J]. Acta Geotechnica, 2020, 15(1): 1-16.

    [29]

    WU C, CHU J, CHENG L, et al. Biogrouting of aggregates using premixed injection method with or without pH adjustment[J]. Journal of Materials in Civil Engineering, 2019, 31(9): 06019008.

    [30]

    MAHAWISH A, BOUAZZA A, GATES W P. Biogrouting coarse materials using soil-lift treatment strategy[J]. Canadian Geotechnical Journal, 2016, 53(12): 2080-2085.

    [31]

    MAHAWISH A, BOUAZZA A, GATES W P. Improvement of coarse sand engineering properties by microbially induced calcite precipitation[J]. Geomicrobiology Journal, 2018, 35(10): 887-897.

    [32]

    MAHAWISH A, BOUAZZA A, GATES W P. Factors affecting the bio-cementing process of coarse sand[J]. Proceedings of the Institution of Civil Engineers - Ground Improvement, 2018, 172(1): 25-36.

    [33] 欧益希, 方祥位, 申春妮, 等. 颗粒粒径对微生物固化珊瑚砂的影响[J]. 水利与建筑工程学报, 2016, 14(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201602007.htm

    OU Yi-xi, FANG Xiang-wei, SHEN Chun-ni, et al. Influence of particle sizes of coral sand on bio-cementation[J]. Journal of Water Resources and Architectural Engineering, 2016, 14(2): 35-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201602007.htm

    [34]

    CHENG L, SHAHIN M A. Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation[J]. Canadian Geotechnical Journal, 2016, 53(9): 1376-1385.

    [35]

    DHAMI N K, MUKHERJEE A, REDDY M S. Viability of calcifying bacterial formulations in fly ash for applications in building materials[J]. Journal of Industrial Microbiology and Biotechnology, 2013, 40(12): 1403-1413.

    [36]

    ZHAO Y, FAN C, LIU P, et al. Effect of activated carbon on microbial-induced calcium carbonate precipitation of sand[J]. Environmental Earth Sciences, 2018, 77(17): 615.

    [37] 谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675-682. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm

    XIE Yue-han, TANG Chao-sheng, YIN Li-yang, et al. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm

    [38] 郑俊杰, 宋杨, 吴超传, 等. 玄武岩纤维加筋微生物固化砂力学特性试验[J]. 华中科技大学学报(自然科学版), 2019, 47(12): 73-78.

    ZHENG Jun-jie, SONG Yang, WU Chao-chuan, et al. Experimental study on mechanical properties of basalt fiber reinforced MICP-treated sand[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(12): 73-78. (In Chinese)

    [39]

    XIAO Y, HE X, EVANS T M, et al. Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019048.

    [40]

    WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth: Murdoch University, 2004.

    [41]

    MA G, HE X, JIANG X, et al. Strength and permeability of bentonite-assisted biocemented coarse sand[J/OL]. Canadian Geotechnical Journal, 2020. doi: 10.1139/cgj-2020-0045.

    [42]

    XIAO Y, LIU H, NAN B, et al. Gradation-dependent thermal conductivity of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(9): 06018010.

    [43]

    ZHAO Q, LI L, LI C. Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease[J]. Journal of Materials in Civil Engineering, 2014, 26(12): 4014094.

    [44]

    CHOU C W, SEAGREN E A, AYDILEK A H. Biocalcification of sand through ureolysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(12): 1179-1189.

    [45]

    CHENG L, QIAN C X, WANG R X. Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe[J]. Acta Chimica Sinica, 2007, 65(19): 2133-2138.

    [46] 何想, 马国梁, 汪杨, 等. 基于微流控芯片技术的微生物加固可视化研究[J]. 岩土工程学报, 2020, 42(6): 1005-1012. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm

    HE Xiang, MA Guo-liang, WANG Yang, et al. Visualization investigation of bio-cementation process based on microfludics[J]. Chinese Journal of Geotechnical Engineering, 2019, 42(6): 1005-1012. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm

    [47]

    THAWADI A S, CORD-RUWISCH R. Calcium carbonate crystals formation by ureolytic bacteria isolated from australian soil and sludge[J]. Journal of Advanced Science & Engineering Research, 2012, 2(1): 12-26.

    [48]

    MULLINS C E, PANAYIOTOPOULOS . The strength of unsaturated mixtures of sand and kaolin and the concept of effective stress[J]. Journal of Soil Science, 1984, 35: 459-468.

    [49]

    XU H, ZHOU M, FANG Y, et al. Effect of mica and hematite (001) surfaces on the precipitation of calcite[J]. Minerals, 2018, 8(1): 17.

    [50] 郭佳奇, 刘希亮, 乔春生. 自然与饱水状态下岩溶灰岩力学性质及能量机制试验研究[J]. 岩石力学与工程学报, 2014, 33(2): 296-308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402011.htm

    GUO Jia-qi, LIU XI-liang, QIAO Chun-sheng. Experimental study of mechanical properties and energy mechanism of karst limestone under natural and saturated states[J]. Chiniese Journal of Rock Mechanics and Engineering, 2014, 33(2): 296-308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402011.htm

  • 期刊类型引用(8)

    1. 谢伟华,胡皓,卢文龙,劳文欣,尹铁男. 一种水下桩基三维点云的分割和滤波方法. 海洋测绘. 2025(01): 53-56+61 . 百度学术
    2. 刘浩杰,吴勇,张向阳,辉龙贵. 基桩桩底岩溶声呐探测典型波形特征分析研究. 中国水运(下半月). 2024(07): 138-139+142 . 百度学术
    3. 庞军,吴红刚,牌立芳,宁峙名,徐汶瀚. 基桩检测中声测管不平行问题及桩身完整性评估方法综述. 铁道标准设计. 2024(07): 78-91 . 百度学术
    4. 翟晓强. 基于超声波透射法的大型桥梁基桩内部缺陷检测方法. 重庆建筑. 2024(09): 56-58 . 百度学术
    5. 刘浩杰,吴勇,张向阳,辉龙贵. 基桩桩底岩溶声呐探测典型波形特征分析研究. 中国水运. 2024(14): 138-139+142 . 百度学术
    6. 张季然,陈德山,李廷文,吕洁印,汪洋. 面向水下未知空间探测的改进RRT路径搜索算法. 武汉理工大学学报(交通科学与工程版). 2023(02): 256-262 . 百度学术
    7. 王鹏,徐时贤,李国红,刘娟红,刘嘉,魏绍斌,陆峰,戴圣龙. 跨海大桥混凝土服役挑战及检测方法综述. 材料导报. 2023(S1): 212-219 . 百度学术
    8. 吴志华,罗创涟,刘爱荣,傅继阳,陈炳聪. 桥梁水下结构病害智能检测方法. 结构工程师. 2023(06): 9-17 . 百度学术

    其他类型引用(8)

图(11)  /  表(2)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  34
  • PDF下载量:  202
  • 被引次数: 16
出版历程
  • 收稿日期:  2020-06-24
  • 网络出版日期:  2022-12-04
  • 刊出日期:  2021-01-31

目录

/

返回文章
返回