筑坝材料缩尺效应及其对阿尔塔什面板坝变形及应力计算的影响

    宁凡伟, 孔宪京, 邹德高, 刘京茂, 余翔, 周晨光

    宁凡伟, 孔宪京, 邹德高, 刘京茂, 余翔, 周晨光. 筑坝材料缩尺效应及其对阿尔塔什面板坝变形及应力计算的影响[J]. 岩土工程学报, 2021, 43(2): 263-270. DOI: 10.11779/CJGE202102006
    引用本文: 宁凡伟, 孔宪京, 邹德高, 刘京茂, 余翔, 周晨光. 筑坝材料缩尺效应及其对阿尔塔什面板坝变形及应力计算的影响[J]. 岩土工程学报, 2021, 43(2): 263-270. DOI: 10.11779/CJGE202102006
    NING Fan-wei, KONG Xian-jing, ZOU De-gao, LIU Jing-mao, YU Xiang, ZHOU Chen-guang. Scale effect of rockfill materials and its influences on deformation and stress analysis of Aertashi CFRD[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 263-270. DOI: 10.11779/CJGE202102006
    Citation: NING Fan-wei, KONG Xian-jing, ZOU De-gao, LIU Jing-mao, YU Xiang, ZHOU Chen-guang. Scale effect of rockfill materials and its influences on deformation and stress analysis of Aertashi CFRD[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 263-270. DOI: 10.11779/CJGE202102006

    筑坝材料缩尺效应及其对阿尔塔什面板坝变形及应力计算的影响  English Version

    基金项目: 

    国家重点研发计划项目 2017YFC0404902

    国家自然科学基金项目 51678113

    国家自然科学基金项目 51779034

    国家自然科学基金项目 51608095

    中央高校基本科研业务费项目 DUT19ZD216

    详细信息
      作者简介:

      宁凡伟(1990— ),男,博士研究生,主要从事堆石料工程特性及本构关系研究。E-mail:nfw12345@mail.dlut.edu.cn

      通讯作者:

      孔宪京, E-mail: kongxj@dlut.edu.cn

    • 中图分类号: TU43

    Scale effect of rockfill materials and its influences on deformation and stress analysis of Aertashi CFRD

    • 摘要: 针对阿尔塔什混凝土面板坝工程,基于超大型三轴仪(试样直径800 mm,最大粒径为160 mm)和传统大型三轴仪(试样直径300 mm,最大粒径为60 mm)固结排水剪切试验结果,研究了筑坝材料缩尺效应及其对阿尔塔什面板坝竣工期坝体变形及应力计算的影响。主要结论有:阿尔塔什筑坝砂砾料与人工开采的灰岩爆破料变形特性的缩尺效应规律相反,砂砾料超大型三轴试验的邓肯张E-B模型模量参数kkb约为大型三轴的1.3~1.4倍;灰岩爆破料大型三轴试验的模量参数kkb约为超大型三轴的1.2~1.4倍。大型三轴试验的邓肯张E-B模型参数无法反映上游砂砾料与下游灰岩爆破料的变形模量差异,导致沉降计算规律与实际不符,超大型三轴试验的模型参数可以很好地反映由于上游砂砾料变形模量高于下游灰岩爆破料而产生的不均匀沉降,计算结果在分布规律及量值上相比大型三轴试验的参数更接近于实测值。
      Abstract: The influences of scale effect on the numerical analysis after construction stage of Aertashi CFRD are studied based on the super-large triaxial (800 mm in sample diameter and 160 mm in the maximum particle size) and commonly large triaxial (300 mm in sample diameter and 60 mm in the maximum particle size) test results. The test results show that the gravel and limestone blasting materials of Aertashi CFRD exhibit opposite trends on the deformation characteristics between the super-large triaxial and commonly large triaxial tests. For the Aertashi gravel materials, the parameters k and kb of Duncan-Chang E-B model for the super-large triaxial tests are 1.3~1.4 times those for the commonly large triaxial tests, while for the Aertashi limestone blasting materials, the parameters k and kb for the commonly large triaxial tests are 1.2~1.4 times those for the super-large triaxial tests. The parameters of Duncan-Chang E-B model for the common large triaxial tests fail to reflect the difference in the deformation moduli between the upstream gravel materials and downstream limestone blasting materials, which causes the simulated settlement to be inconsistent with the actual measurement. The simulated results by using the super-large triaxial parameters can well reflect the uneven settlement due to the different moduli between gravel and limestone blasting materials. The distribution and values of the settlement simulated by the super-large triaxial tests are much closer to the monitoring data.
    • 图  1   原型级配及试验级配

      Figure  1.   Grain-size distribution curves

      图  2   砂砾料偏应力-应变-体变关系

      Figure  2.   (σ1 σ3)- εa-εv relation curves of gravel materials

      图  3   灰岩爆破料偏应力-应变-体变关系

      Figure  3.   (σ1σ3)- εa-εv relation curves of limestone blasting materials

      图  4   阿尔塔什面板坝典型横剖面示意图

      Figure  4.   Typical cross section of Aertashi CFRD

      图  5   阿尔塔什三维复杂河谷网格与大坝三维整体网格

      Figure  5.   Mesh of 3D complex valley and overall FEM mesh of Aertashi CFRD

      图  6   阿尔塔什面板坝施工填筑过程

      Figure  6.   Construction stages of Aertashi CFRD

      图  7   竣工期典型横断面竖向沉降图(单位:cm,沉降为负)

      Figure  7.   Settlement contours of typical section after construction

      图  8   竣工期典型横断面大主应力分布图

      Figure  8.   Contours of major principal stress of typical section after construction

      图  9   竣工期典型横断面小主应力分布图

      Figure  9.   Contours of minor principal stress of typical section after construction

      图  10   大坝0+475断面测点位置示意图

      Figure  10.   Displacement gauges in cross section 0+475 of Aertashi CFRD

      图  11   大坝0+475断面沉降实测和计算对比

      Figure  11.   Comparison between simulated and measured settlements of cross section 0+475

      表  1   试验控制条件

      Table  1   Control conditions in tests

      材料名称试样直径/mm最大粒径/mm制样干密度/(g·cm-3)围压σ3/MPa
      砂砾料8001602.3020.5,1.0,1.5
      300602.3020.5,1.0,1.5
      灰岩爆破料8001602.1550.5,1.0,1.5
      300602.1550.5,1.0,1.5
      下载: 导出CSV

      表  2   不同围压下灰岩爆破料的颗粒破碎率Bm

      Table  2   Variation of particle breakage Bm with confining pressure for limestone blasting materials  (%)

      试验类型σ3/MPa
      0.51.01.5
      超大型三轴试验7.610.212.8
      大型三轴试验4.86.49.6
      下载: 导出CSV

      表  3   不同围压下砂砾料的颗粒破碎率Bm

      Table  3   Variation of particle breakage Bm with confining pressure for gravel materials (%)

      试验类型σ3/MPa
      0.51.01.5
      超大型三轴试验1.93.95.6
      大型三轴试验1.63.24.8
      下载: 导出CSV

      表  4   阿尔塔什面板坝筑坝材料邓肯张E-B模型参数(不同缩尺)

      Table  4   Parameters of Aertashi rockfill materials for E-B model (different model scales)

      材料名称试验设备试样直径/mmφ0Δφ knRf kbm
      砂砾料大型三轴仪30047.98.013200.450.826800.22
      超大型三轴仪80052.99.017500.500.859500.25
      灰岩爆破料大型三轴仪30052.68.711500.400.825820.02
      超大型三轴仪80050.26.59800.330.744200.01
      垫层料大型三轴仪30054.310.318000.500.809500.35
      下载: 导出CSV
    • [1] 孔宪京, 徐斌, 邹德高, 等. 混凝土面板坝面板动力损伤有限元分析[J]. 岩土工程学报, 2014, 36(9): 1594-1600. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409007.htm

      KONG Xian-jing, XU Bin, ZOU De-gao, et al. Finite element dynamic analysis for seismic damage of slabs of concrete faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1594-1600. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409007.htm

      [2] 陈生水. 土石坝试验新技术研究与应用[J]. 岩土工程学报, 2015, 37(1): 1-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501002.htm

      CHEN Sheng-shui. Experimental techniques for earth and rockfill dams and their applications[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 1-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501002.htm

      [3] 陈生水, 凌华, 米占宽, 等. 大石峡砂砾石坝料渗透特性及其影响因素研究[J]. 岩土工程学报, 2019, 41(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901004.htm

      CHEN Sheng-shui, LING Hua, MI Zhan-kuan, et al. Experimental study on permeability and its influencing factors for sandy gravel of Dashixia dam[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 26-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901004.htm

      [4]

      MARSAL R J. Large scale testing of rockfill materials[J]. Journal of the Soil Mechanics & Foundations Division, 1967, 93(2): 27-43.

      [5]

      MARACHI N D, CHAN C K, SEED H B. Evaluation of properties of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(1): 95-114. doi: 10.1061/JSFEAQ.0001735

      [6] 李凤鸣, 卞富宗. 两种粗粒土的比较试验[J]. 勘察科学技术, 1991(2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX199102006.htm

      LI Feng-ming, BIAN Fu-zong. Comparison of two rockfill tests[J]. Site Investigation Science and Technology, 1991(2): 25-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX199102006.htm

      [7] 王继庄. 粗粒料的变形特性和缩尺效应[J]. 岩土工程学报, 1994, 16(4): 89-95. doi: 10.3321/j.issn:1000-4548.1994.04.012

      WANG Ji-zhuang. Deformation characteristic and scale effect of rockfiil material[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(4): 89-95. (in Chinese) doi: 10.3321/j.issn:1000-4548.1994.04.012

      [8]

      VARADARAJAN A, SHARMA K G, VENKATACHALAM K, et al. Testing and modeling two rockfill materials[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2003, 129(3): 206-218.

      [9] 李翀, 何昌荣, 王琛, 等. 粗粒料大型三轴试验的尺寸效应研究[J]. 岩土力学, 2008, 29(增刊1): 563-566. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1113.htm

      LI Chong, HE Chang-rong, WANG Chen, et al. Study of scale effect of large-scale triaxial test of coarse-grained materials[J]. Rock and Soil Mechanics, 2008, 29(S1): 563-566. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1113.htm

      [10] 凌华, 殷宗泽, 朱俊高, 等. 堆石料强度的缩尺效应试验研究[J]. 河海大学学报(自然科学版), 2011, 39(5): 540-544. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201904019.htm

      LING Hua, YIN Zong-ze, ZHU Jun-gao, et al. Experimental study of scale effect on strength of rockfill materials[J]. Journal of Hohai University (Natural Sciences), 2011, 39(5): 540-544. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201904019.htm

      [11]

      HU W, DANO C, HICHER P Y, et al. Effect of sample size on the behavior of granular materials[J]. Geotechnical Testing Journal, 2011, 34(3): 186-197.

      [12]

      HONKANADAVAR N P, GUPTA S L. Effect of particle size and confining pressure on shear strength parameter of rockfill materials[J]. Academic Research, 2012, 1(1): 49-63.

      [13] 孔宪京, 宁凡伟, 刘京茂, 等. 基于超大型三轴仪的堆石料缩尺效应研究[J]. 岩土工程学报, 2018, 41(2): 255-261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902003.htm

      KONG Xian-jing, NING Fan-wei, LIU Jing-mao, et al. Scale effect of rockfill materials using super large triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 41(2): 255-261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902003.htm

      [14] 褚福永, 朱俊高, 翁厚洋, 等. 堆石料强度及变形特性缩尺效应试验[J]. 河海大学学报(自然科学版), 2019, 47(4): 381-386. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201904019.htm

      CHU Fu-yong, ZHU Jun-gao, WENG Hou-yang, et al. Experimental study of scale effect on strength and deformation characteristics of rock-fill materials[J]. Journal of Hohai University (Natural Sciences), 2019, 47(4): 381-386. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201904019.htm

      [15] 朱晟, 梁现培, 冯树荣. 基于现场大型承载试验的原级配筑坝堆石料力学参数反演研究[J]. 岩土工程学报, 2009, 31(7): 1138-1143. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200907030.htm

      ZHU Sheng, LIANG Xian-pei, FENG Shu-rong. Back analysis of mechanical parameters of naturally graded rockfill materials based on large-scale loading plate tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1138-1143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200907030.htm

      [16] 孔宪京, 刘京茂, 邹德高. 堆石料尺寸效应研究面临的问题及多尺度三轴试验平台[J]. 岩土工程学报, 2016, 38(11): 1941-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611003.htm

      KONG Xian-jing, LIU Jing-mao, ZOU De-gao. Scale effect of rockfill and multiple-scale triaxial test platform[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1941-1947. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611003.htm

      [17] 土工试验规程:SL237—1999[S]. 1999.

      Specification of Soil Test: SL237—1999[S]. 1999. (in Chinese)

      [18] 孔宪京, 刘京茂, 邹德高, 等. 紫坪铺面板坝堆石料颗粒破碎试验研究[J]. 岩土力学, 2014, 35(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401004.htm

      KONG Xian-jing, LIU Jing-mao, ZOU De-gao, et al. Experimental study of particle breakage of Zipingpu rockfill material[J]. Rock and Soil Mechanics, 2014, 35(1): 35-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401004.htm

      [19] 王晓鹤. 颗粒形状对堆石料强度和变形特性试验研究[D]. 大连: 大连理工大学, 2019.

      WANG Xiao-he. Experimental Study on Strength and Deformation Characteristics of Rockfill by Particle Shape[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)

      [20]

      CHEN K, ZOU D, KONG X. A nonlinear approach for the three-dimensional polyhedron scaled boundary finite element method and its verification using Koyna gravity dam[J]. Soil Dynamics and Earthquake Engineering, 2017, 96: 1-12.

      [21]

      ZOU D G, CHEN K, KONG X J, et al. An enhanced octree polyhedral scaled boundary finite element method and its applications in structure analysis[J]. Engineering Analysis With Boundary Elements, 2017, 84: 87-107.

      [22] 张宇. 高面板堆石坝面板地震响应,破损机理及抗震对策研究[D]. 大连: 大连理工大学, 2017.

      ZHANG Yu. Research on Seismic Response, Damage Mechanism and Anti-seismic Countermeasure of Face Slab of High Concrete Faced Rockfill Dam[D]. Dalian: Dalian University of Technology, 2017. (in Chinese)

      [23] 杨蓉, 秦淑芳, 曾茂全, 等. 吉林台一级水电站混凝土面板堆石坝变形监测数据分析[J]. 水利水电技术, 2010, 41(6): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201006023.htm

      YANG Rong, QIN Shu-fang, ZENG Mao-quan, et al. Analysis on deformation monitoring data of concrete face rock-fill dam for Jilintai Hydropower Station I[J]. Water Resources and Hydropower Engineering, 2010, 41(6): 61-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201006023.htm

      [24] 菅强, 顾永明, 韩庆. 察汗乌苏水电站面板堆石坝坝体沉降变形规律分析[J]. 西北水电, 2013(3): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SBXX201303020.htm

      JIAN Qiang, GU Yong-ming, HAN Qing. Analysis on law of settlement deformation of concrete face rockfill dam embankment[J]. Northwest Hydropower, 2013(3): 76-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SBXX201303020.htm

    图(11)  /  表(4)
    计量
    • 文章访问数:  319
    • HTML全文浏览量:  25
    • PDF下载量:  125
    • 被引次数: 0
    出版历程
    • 网络出版日期:  2022-12-04
    • 刊出日期:  2021-01-31

    目录

      /

      返回文章
      返回