• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

加筋路堤下刚性桩复合地基若干有限元建模类型分析

姜彦彬, 何宁, 汪璋淳, 何斌, 钱亚俊

姜彦彬, 何宁, 汪璋淳, 何斌, 钱亚俊. 加筋路堤下刚性桩复合地基若干有限元建模类型分析[J]. 岩土工程学报, 2020, 42(11): 2106-2114. DOI: 10.11779/CJGE202011016
引用本文: 姜彦彬, 何宁, 汪璋淳, 何斌, 钱亚俊. 加筋路堤下刚性桩复合地基若干有限元建模类型分析[J]. 岩土工程学报, 2020, 42(11): 2106-2114. DOI: 10.11779/CJGE202011016
JIANG Yan-bin, HE Ning, WANG Zhang-chun, HE Bin, QIAN Ya-jun. Finite element modelling types for rigid pile composite foundation under geosynthetic-reinforced embankment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2106-2114. DOI: 10.11779/CJGE202011016
Citation: JIANG Yan-bin, HE Ning, WANG Zhang-chun, HE Bin, QIAN Ya-jun. Finite element modelling types for rigid pile composite foundation under geosynthetic-reinforced embankment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2106-2114. DOI: 10.11779/CJGE202011016

加筋路堤下刚性桩复合地基若干有限元建模类型分析  English Version

基金项目: 

国家重点研发计划项目 2018YFC1508505

国家重点研发计划项目 2017YFC0404801

国家自然科学基金面上项目 51979174

国家自然科学基金面上项目 51679149

中央级公益性科研院所基本科研业务费专项资金项目 Y319004

中央级公益性科研院所基本科研业务费专项资金项目 Y320006

详细信息
    作者简介:

    姜彦彬(1989-),男,博士,主要从事软土地基加固方面的研究。E-mail:tumujyb@163.com

  • 中图分类号: TU43

Finite element modelling types for rigid pile composite foundation under geosynthetic-reinforced embankment

  • 摘要: 基于加筋路堤下CFG桩复合地基现场试验段分别建立单桩、群桩及全断面有限元模型,探讨几何模型、桩土接触等条件对系统变形、应力分布及荷载传递的影响。结果表明:受路堤边界效应影响,全断面模型的沉降及荷载分配完成较快,应力比n、桩的荷载分担效率系数E均在路肩内侧附近达到最大值,且分别高于路中位置15.7%和5.2%。坡脚位置桩顶位移矢量角、桩的水平荷载及弯矩显著。单桩与群桩模型规律较为相近,沉降发展相对迟缓且略低于全断面模型。各有限元模型预测的最终状态的n,E及等沉面高度均正比于其桩土沉降差。统计表明单桩加固范围内实测与理论荷载误差可达-35.1%~58.5%,桩土竖向应力分布并不均匀。设置允许桩土发生相对位移的接触条件将增大沉降量及等沉面高度,并影响浅层桩身受力。桩承式加筋路堤有限元数值计算应优先选择考虑桩土接触条件的全断面模型。
    Abstract: Based on the in-situ test section of CFG pile composite foundation under geosynthetic-reinforced embankment, the finite element models for a single pile, group piles and full section are established, respectively, and the influences of the geometric model, pile-soil contact and other conditions on system deformation, stress distribution and load transfer are discussed. Mostly due to the influences of embankment boundary effect, the settlement and load distribution of the full-section model are both developed in time as the in-situ test results. The stress ratio (n) and the load-sharing efficiency of pile (E) both reach the maximum near the inner side of the embankment shoulder and are 15.7% and 5.2% higher than those in the center of the embankment, respectively. At the toe of the slope, the displacement vector angle of the pile top, the horizontal load and bending moment of the pile are quite significant. Under the surcharge with the same equal thickness, the single-pile model has similar performance with the group-pile model, and the settlement development of both is relatively slow and slightly lower than that of the full-section model. In each model, the predicted results show that n, E and the equal settlement surface height are all directly proportional to the differential settlement of soil-pile on the subsurface at the final computing time. The distribution of non-uniform vertical stress on the subsurface is shown according to the numerical results. According to the statistic results, the deviation between the test load and the theoretical load can be -35.1% to 58.5% within single-pile reinforced area. Setting the contact interaction to enable the relative displacement of pile and soil will increase both the settlement and the height of the equal settlement surface, and also affect the stress of the shallow pile shaft. The full-section finite element model with pile-soil interaction is recommended to investigate the composite foundation under reinforced embankment.
  • 图  1   加筋路堤下CFG桩复合地基剖面图

    Figure  1.   Profile of CFG pile composite foundation under reinforced embankment

    图  2   路堤填筑过程

    Figure  2.   Loading process of embankment

    图  3   有限元几何模型示意图

    Figure  3.   Schematic graphs of finite element geometric models

    图  4   地表桩土沉降

    Figure  4.   Settlements of pile and soil on subsurface

    图  5   路中位置桩土应力

    Figure  5.   Stresses on pile and soil on subsurface in center of embankment

    图  6   全断面模型路中位置桩土应力等值线

    Figure  6.   Contour map of stress of pile and soil on subsurface in center of embankment in full-section model

    图  7   单桩加固范围荷载统计对比

    Figure  7.   Comparison of statistic loads within single-pile reinforced area

    图  8   路中位置单桩加固范围最终应力

    Figure  8.   Ultimate stresses within single-pile reinforced area in center of embankment

    图  9   填筑结束时刻路中位置桩和桩间土中心之上路堤中沉降差及竖向应力分布

    Figure  9.   Difference of settlement and distribution of vertical stress in embankment above pile and soil center in center of embankment at end of filling

    图  10   填筑过程路中位置各模型桩土应力调整分析

    Figure  10.   Analysis of stress adjustment of pile-soil of numerical models during embankment construction

    图  11   桩土相互作用

    Figure  11.   Pile-soil interaction

    图  12   变形水平向分布

    Figure  12.   Horizontal distribution of deformation

    图  13   荷载水平向分布

    Figure  13.   Distribution of horizontal loads

    表  1   数值模型概况

    Table  1   Numerical models

    模型加筋+接触无筋+接触加筋+无接触无筋+无接触
    全断面A1A2A3A4
    群桩B
    单桩C
    下载: 导出CSV

    表  2   有限元计算材料参数

    Table  2   Parameters of materials for finite element analysis

    土层厚度/mw/%γ/(kN·m-3)eK0IPE/MPaνc/kPaφ/(°)ψ/(°)k/(10-3m·d-1)
    面层0.18622.01200.000.22
    基层0.57521.0100.000.30
    填土4.06019.20.5930.000.376.024.00
    碎石垫层0.50021.00.3660.000.26040.010
    ①粉质黏土2.50031.019.10.8720.6914.02.740.4120.018.005.2
    ②淤泥质土6.40034.118.60.9510.748.32.850.4311.315.005.4
    ③淤泥质土22.10042.118.11.1600.8513.22.000.4612.68.900.8
    ④细砂12.00029.519.10.8340.585.790.37025.00617.8
    CFG桩33.00024.00.2512000.000.20
    加筋0.0052000.000.20
    下载: 导出CSV

    表  3   路中位置单桩加固范围荷载

    Table  3   Loads on subsurface within single-pile reinforced area in center of embankment

    文献桩顶压强/kPa桩间土压强/kPaFsingle/kNγHeA/kN误差/%
    本文67237253362-30.2
    Liu et al[8]64947896932-4.0
    姜彦彬等[2]3523047242511.1
    Chen et al[11]37519720788-8.5
    Briançon et al-2R[12]5958841137011.1
    Briançon et al-3R[12]29575554737844.8
    Briançon et al-4R[12]24834445239713.7
    Liu et al[13]5967093158858.5
    Zhou et al[14]12727259399-35.1
    Cheng et al[15]21012580812-28.6
    Cao et al[16]17911632023337.1
    郑俊杰等[17]5215411321164-2.7
    夏唐代等[18]553111333107923.5
    下载: 导出CSV
  • [1] 娄炎, 何宁, 娄斌. 高速公路深厚软基工后沉降控制成套技术[M]. 北京: 人民交通出版社, 2011: 91-104.

    LOU Yan, HE Ning, LOU Bin. Complete Settlement Control Technology for Deep Soft Foundation of Expressway[M]. Beijing: China Communications Press, 2011: 91-104. (in Chinese)

    [2] 姜彦彬, 何宁, 林志强, 等. 路堤深厚软基管桩复合地基数值模拟[J]. 水利水运工程学报, 2018(2): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201802006.htm

    JIANG Yan-bin, HE Ning, LIN Zhi-qing, et al. Numerical study on pipe pile composite foundation of deep soft foundation under embankment[M]. Hydro-science and Engineering, 2018(2): 43-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201802006.htm

    [3]

    JENCK O, DIAS D, KASTNER R. Three-dimensional numerical modeling of a piled embankment[J]. Int J Geomech, 2009, 9: 102-112. doi: 10.1061/(ASCE)1532-3641(2009)9:3(102)

    [4]

    ARIYARATHNE P, LIYANAPATHIRANA D S. Review of existing design methods for geosynthetic-reinforced pile-supported embankments[J]. Soils and Foundations, 2015, 55: 17-34. doi: 10.1016/j.sandf.2014.12.002

    [5]

    KHABBAZIAN M, KALIAKIN V N, MEEHAN C L. Column supported embankments with geosynthetic encased columns: validity of the unit cell concept[J]. Geotechnical and Geological Engineering, 2015, 33(3): 425-442. doi: 10.1007/s10706-014-9826-8

    [6]

    HEWLETT W J, RANDOLPH M F. Analysis of piled embankments[J]. Ground Eng, 1988, 21(3): 12-18.

    [7]

    LIU W Z, QU S, ZHANG H, et al. An integrated method for analyzing load transfer in geosynthetic-reinforced and pile-supported embankment[J]. KSCE Journal of Civil Engineering, 2017, 21(3): 687-702. doi: 10.1007/s12205-016-0605-3

    [8]

    LIU H L, NG C W W, FEI K. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: case study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(12): 1483-1493. doi: 10.1061/(ASCE)1090-0241(2007)133:12(1483)

    [9]

    ZHUANG Y, WANG K Y. Finite-element analysis on the effect of subsoil in reinforced piled embankments and comparison with theoretical method predictions[J]. International Journal of Geomechanics, 2016, 16(5): 1-15.

    [10]

    LIU H L, KONG G Q, DING X M, et al. Performances of large-diameter cast-in place concrete pipe pile and pile group under lateral loads[J]. Journal of Performance of Constructed Facilities, 2013, 27(2): 191-202.

    [11]

    CHEN R P, XU Z Z, CHEN Y M. Field tests on pile-supported embankments over soft ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6): 777-785. doi: 10.1061/(ASCE)GT.1943-5606.0000295

    [12]

    BRIANÇON L, SIMON B. Performance of pile-supported embankment over soft soil: full-scale experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(4): 551-561.

    [13]

    LIU H L, KONG G Q, CHU J, et al. Grouted gravel column-supported highway embankment over soft clay: case study[J]. Canadian Geotechnical Journal, 2015, 52(11): 1725-1733. doi: 10.1139/cgj-2014-0284

    [14]

    ZHOU M, LIU H L, CHEN Y M, et al. First application of cast-in-place concrete large-diameter pipe (PCC) pile- reinforced railway foundation: a field study[J]. Canadian Geotechnical Journal, 2016, 53(4): 708-716. doi: 10.1139/cgj-2014-0547

    [15]

    CHENG Q G, WU J J, ZHANG D X, et al. Field testing of geosynthetic-reinforced and column-supported earth platforms constructed on soft soil[J]. Frontiers of Structural and Civil Engineering, 2014, 8(2): 124-139. doi: 10.1007/s11709-014-0255-9

    [16]

    CAO W Z, ZHENG J J, ZHANG J, et al. Field test of a geogrid-reinforced and floating pile-supported embankment[J]. Geosynthetics International, 2016, 23(5): 348-361. doi: 10.1680/jgein.16.00002

    [17] 郑俊杰, 张军, 马强, 等. 路桥过渡段桩承式加筋路堤现场试验研究[J]. 岩土工程学报, 2012, 34(2): 355-362. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201202030.htm

    ZHENG Jun-Jie, ZHANG Jun, MA Qiang, et al. Experimental investigation of geogrid-reinforced and pile-supported embankment at bridge approach[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 355-362. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201202030.htm

    [18] 夏唐代, 王梅, 寿旋, 等. 筒桩桩承式加筋路堤现场试验研究[J]. 岩石力学与工程学报, 2010, 29(9): 1929-1936. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009025.htm

    XIA Tang-dai, WANG Mei, SHOU Xuan, et al. Field test study of reinforced embankment supported by cast-in-situ thin-wall tubular piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1929-1936. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009025.htm

    [19]

    LOW B K, TANG S K, CHOA V. Arching in piled embankments[J]. Journal of Geotechnical Engineering, 1994, 120(11): 1917-1938.

图(13)  /  表(3)
计量
  • 文章访问数:  318
  • HTML全文浏览量:  27
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-24
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-10-31

目录

    /

    返回文章
    返回