New method for introducing gradient stress into rock-burst prediction
-
摘要: 地下工程开挖过程中,深部岩体在开挖扰动作用下,洞壁附近围岩所受切向应力呈梯度分布。为探索梯度应力对岩体产生岩爆特性的影响,借助自主研发的YB-A型气液复合岩爆模拟试验装置对大尺寸试件进行不同梯度应力作用下的岩爆试验,且在结合大量工程实例的基础上,引入梯度应力强度比对强度-应力比判据进行优化,建立一种引入梯度应力的岩爆预测方法。结果表明,岩体岩爆烈度与其所受梯度应力存在明显的相关性,考虑梯度应力的岩爆判据克服了传统的强度-应力比指标区间不均匀的问题,预测准确率提高到90.4%,为地下工程岩爆预测提供理论依据。Abstract: During the excavation of underground projects, the tangential stress in the surrounding rock near the cave wall is distributed in a gradient because of the disturbance of excavation unloading in the deep rock mass. In order to explore the effects of gradient stress on rock-burst characteristics, the rock-burst tests under the effects of different gradient stresses on large-sized specimens are conducted with the help of the independently developed rock-burst test simulation device. It is found that there is an obvious correlation between the intensity of rock-burst of rock mass and the gradient stress that it is subjected to. On the basis of considering a large number of engineering examples, the intensity ratio of gradient stress is introduced to optimize the intensity stress ratio criterion so as to establish a prediction method for rock-burst with gradient stress. The results show that there is a clear correlation between the intensity of rock-burst of rock mass and the gradient stress it is subjected to. The criterion considering the gradient stress of the rock-burst overcomes the uneven problem of the traditional intensity-stress ratio index, and the prediction accuracy is raised to 90.4%, which provides a theoretical basis for the prediction of rock-burst of underground projects.
-
Keywords:
- gradient stress /
- rock-burst prediction /
- intensity /
- intensity ratio
-
-
表 1 强度应力比判据分类
Table 1 Classification of stress intensity ratio criterion
判据 工程实例 判断指标 挪威Russense判据 挪威矿山 σθmax /Rc苏联Turchaninov判据 科拉半岛矿井 ( σθmax +σ1 )/Rc中国陶振宇判据 中国隧道 Rc/σ1 Hoek判据 南非矿山 σθmax /Rc徐林生等 二郎山隧道 σθmax /Rc表 2 3种加载路径下的各项差异
Table 2 Differences of three loading paths
加载路径 梯度 岩爆声响 抛射距离/m 耗能 岩爆烈度 加载路径Ⅰ 大 清脆 0~1.2 低 强 加载路径Ⅱ 小 清脆 0~1 中 中 加载路径Ⅲ 无 低沉 0~0.5 高 弱 注: 耗能相对大小 = Σ加载时间×载荷。分段区间 岩爆等级 σθmax /Rc<0.3无岩爆 0.3≤ σθmax /Rc<0.5弱岩爆 0.5≤ σθmax /Rc<0.7中岩爆 σθmax /Rc≥0.7强岩爆 表 4 现场工程岩爆统计(
σθmax /Rc≤0.3)Table 4 Statistics of field rock-bursts(
σθmax /Rc≤0.3)隧道名称 σθmax/Rc η/(MPa·m-1) β 实际岩爆等级 σθmax/Rc 法预测结果鲁布革 0.23 2.13 9.24 无岩爆 无岩爆 二郎山公路隧道(平导K261+ 701) 0.28 3.73 13.34 无岩爆 无岩爆 二郎山公路隧道(平导K262+ 740) 0.11 0.58 5.31 无岩爆 无岩爆 二郎山公路隧道(平导K262+ 461) 0.12 0.55 4.54 无岩爆 无岩爆 二郎山公路隧道(平导K262+ 444) 0.10 0.59 5.87 无岩爆 无岩爆 二郎山公路隧道(平导K262+ 445) 0.08 0.39 4.90 无岩爆 无岩爆 二郎山公路隧道(平导K262+ 298) 0.26 1.49 5.72 无岩爆 无岩爆 二郎山公路隧道(平导K261+ 701) 0.11 1.04 9.45 无岩爆 无岩爆 二郎山公路隧道 0.28 1.94 7.00 无岩爆 无岩爆 二郎山公路隧道(平导K262+ 29) 0.26 2.652 10.20 弱岩爆 弱岩爆 表 5 现场工程岩爆统计(0.3<
σθmax /Rc≤0.4)Table 5 Statistics of field rock-bursts(0.3<
σθmax/Rc ≤0.4)隧道名称 σθmax/Rc η/(MPa·m-1) β 实际岩爆等级 σθmax/Rc 法预测结果太平驿 0.38 3.48 9.16 弱岩爆 弱岩爆 中天山隧道(SZ-2) 0.33 1.99 5.96 弱岩爆 弱岩爆 中天山隧道(SZ-2-1) 0.33 1.82 5.47 弱岩爆 弱岩爆 中天山隧道(SZ-5) 0.34 2.14 6.31 弱岩爆 弱岩爆 中天山隧道(SZ-6) 0.35 1.65 4.71 弱岩爆 弱岩爆 秦岭公路隧道2号竖井 0.36 2.33 6.54 弱岩爆 弱岩爆 巴陕高速米仓山隧道 0.35 6.44 18.39 弱岩爆 弱岩爆 瑞典Headrace隧道 0.38~0.41 5.195~5.844 12.67~15.38 弱岩爆 弱岩爆 挪威Eikesdal公路隧道 0.35 5.91 16.74 弱岩爆 弱岩爆 表 6 现场工程岩爆统计(0.4<
σθmax/Rc )Table 6 Statistics of field rock-bursts(0.4<
σθmax/Rc )隧道名称 σθmax/Rc η/(MPa·m-1) β 实际岩爆等级 σθmax/Rc 法预测结果Mine-by试验洞 0.77 31.10 40.39 弱岩爆 强岩爆 锦屏Ⅱ引水隧洞 0.82 3.45 4.21 中岩爆 强岩爆 锦屏Ⅱ排水隧洞 0.82 7.02 8.56 强岩爆 强岩爆 Neelum-Jhelum引水隧洞(09+700.00) 1.80 13.76~14.87 7.64~8.26 强岩爆 强岩爆 Neelum-Jhelum引水隧洞(09+693.33) 1.76 13.77~14.89 7.82~8.46 强岩爆 强岩爆 Neelum-Jhelum引水隧洞(09+685.75) 1.73 13.67~14.80 7.9~8.55 强岩爆 强岩爆 Neelum-Jhelum引水隧洞(09+675.30) 1.83 13.56~14.78 7.4~8.07 强岩爆 强岩爆 Neelum-Jhelum引水隧洞(09+670.70) 1.86 13.44~14.6 7.26~7.85 强岩爆 强岩爆 Neelum-Jhelum引水隧洞(09+663.25) 1.82 14.05~15.11 7.72~8.3 强岩爆 强岩爆 Neelum-Jhelum引水隧洞(09+653.77) 1.84 14.06~15.14 7.64~8.23 强岩爆 强岩爆 Neelum-Jhelum引水隧洞(09+644.55) 0.89 5.25~6.10 5.9~6.85 中岩爆 强岩爆 Neelum-Jhelum引水隧洞(09+633.73) 0.85 5.14~5.99 6.05~7.05 中岩爆 强岩爆 Neelum-Jhelum引水隧洞(09+629.63) 0.85 5.12~5.98 6.02~7.04 中岩爆 强岩爆 Neelum-Jhelum引水隧洞(09+626.28) 0.88 5.18~6.05 5.89~6.88 中岩爆 强岩爆 Neelum-Jhelum引水隧洞(09+622.66) 0.86 5.14~6.01 5.98~6.99 中岩爆 强岩爆 Neelum-Jhelum引水隧洞(09+619.16) 0.89 5.11~5.98 5.74~6.72 中岩爆 强岩爆 Neelum-Jhelum引水隧洞(09+610.02) 0.96 5.11~5.99 5.32~6.24 中岩爆 强岩爆 Neelum-Jhelum引水隧洞(07+989.87) 1.56 16.16~17.17 10.36~11.01 弱岩爆 强岩爆 Neelum-Jhelum引水隧洞(07+977.90) 1.45 16.13~17.19 11.12~11.86 弱岩爆 强岩爆 Neelum-Jhelum引水隧洞(07+970.93) 1.60 16.17~17.22 10.1~10.76 弱岩爆 强岩爆 Neelum-Jhelum引水隧洞(07+959.89) 1.83 16.11~17.16 8.8~9.38 弱岩爆 强岩爆 Neelum-Jhelum引水隧洞(07+956.59) 2.21 16.15~17.21 7.3~7.79 中岩爆 强岩爆 Neelum-Jhelum引水隧洞(07+941.71) 1.68 16.13~17.18 9.6~10.22 弱岩爆 强岩爆 Neelum-Jhelum引水隧洞(07+937.23) 1.70 16.20~17.26 9.53~10.15 弱岩爆 强岩爆 Neelum-Jhelum引水隧洞(07+926.18) 2.42 15.97~17.06 6.60~7.05 中岩爆 强岩爆 Neelum-Jhelum引水隧洞(07+915.57) 1.78 16.00~17.09 8.99~9.6 弱岩爆 强岩爆 Neelum-Jhelum引水隧洞(07+893.42) 3.09 15.96~17.05 5.17~5.52 中岩爆 强岩爆 Neelum-Jhelum引水隧洞(07+889.00) 2.84 15.97~17.05 5.62~6 中岩爆 强岩爆 二滩水电站 0.41 4.92 12.00 弱岩爆 弱岩爆 中天山隧道 0.56 3.18 5.72 中岩爆 中岩爆 巴玉隧道(DK193+566) 0.463 3.87 8.36 强岩爆 弱岩爆 巴玉隧道(DK201+410) 0.378 2.58 7.56 弱岩爆 弱岩爆 巴玉隧道(DK195+443) 0.596 2.86 7.99 强岩爆 中岩爆 巴玉隧道(DK196+726) 0.586 4.68 7.99 强岩爆 中岩爆 巴玉隧道(DK193+545) 0.459 3.84 8.37 强岩爆 弱岩爆 巴玉隧道(DK194+637) 0.559 4.45 7.96 强岩爆 中岩爆 猴子山 0.72 3.53 4.90 中岩爆 强岩爆 秦岭公路隧道2号竖井 0.45 2.86 6.36 中岩爆 弱岩爆 秦岭公路隧道2号竖井 0.57 3.55 6.23 中岩爆 中岩爆 秦岭公路隧道2号竖井 0.44 2.77 6.25 弱岩爆 弱岩爆 挪威西玛水电站地下厂房 0.71 2.45 3.47 中岩爆 强岩爆 日本关越公路隧道 1.06 15.56 14.64 弱岩爆 强岩爆 挪威Sewage隧道 0.56 22.31 39.56 弱岩爆 中岩爆 中国天生桥引水隧洞 0.68 4.367~4.937 6.39~7.23 中岩爆 中岩爆 中国锦屏水电地质探洞 0.386~0.588 10.65 27.59~18.11 弱岩爆 弱岩爆—中岩爆 中国太平峰水工隧洞 0.410~0.431 5.00 12.20~11.60 弱岩爆 弱岩爆 二郎山公路隧道(平导K261+ 939) 1.38 7.82 5.68 中岩爆 强岩爆 二郎山公路隧道(平导K261+ 905) 0.64 0.03 0.05 中岩爆 中岩爆 二郎山公路隧道(平导K261+ 761) 0.48 0.03 0.06 弱岩爆 弱岩爆 二郎山公路隧道 0.71 4.66 6.56 强岩爆 强岩爆 锦屏I级 1.00 3.21 3.21 弱岩爆 强岩爆 渔子溪一级水电站引水隧洞 0.53 7.26 13.72 弱岩爆 中岩爆 冬瓜铜矿 0.80 5.15 6.45 中岩爆 强岩爆 中国凡口铅锌矿 0.42 3.60 8.57 强岩爆 弱岩爆 表 7 双江口坝区岩爆情况及预测结果
Table 7 Rock-bursts in Shuangjiangkou dam area and predicted results
岩爆的位置 破坏现象与岩爆烈度 应力特征 本文的预测结果 传统 σθmax/Rc 预测SPD9(115 m) 多呈爆裂脱落、少量弹射。(中岩爆) σθmax/Rc = 0.62 β= 3.80中岩爆 中岩爆 SPD9(205 m) 出现片帮(弱岩爆) σθmax/Rc =0.78 β=3.31弱岩爆 强岩爆 SPD9(301~305 m) 零星岩爆(弱岩爆) σθmax/Rc =0.57 β=3.67弱岩爆 中岩爆 SPD9(400~405 m) 多呈爆裂脱落、最大块度 1.2 m×0.6 m,厚 70~100 mm。(中岩爆) σθmax/Rc =1.21 β=3.73中岩爆 强岩爆 SPD10(300 m) 壁面出现短小裂隙。(弱岩爆) σθmax/Rc =0.64 β=3.62弱岩爆 中岩爆 SPD10(300 m) (中岩爆) σθmax/Rc =0.84 β=3.94中岩爆 强岩爆 -
[1] GUO Z P, YANG H Z, XIE W W, et al. Analysis of rock burst risk of roadway in lower seam “knife handle” type isolated working face[J]. Geotechnical and Geological Engineering, 2019: 1-13.
[2] 徐琛, 刘晓丽, 王恩志, 等. 基于组合权重-理想点法的应变型岩爆五因素预测分级[J]. 岩土工程学报, 2017, 39(12): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201712015.htm XU Chen, LIU Xiao-li, WANG En-zhi, et al. Prediction and classification of strain mode rock-burst based on five-factor criterion and combined weight-ideal point method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 103-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201712015.htm
[3] JIANG F X, WEI Q D, WANG C W, et al. Analysis of rock burst mechanism in extra-thick coal seam controlled by huge thick conglomerate and thrust fault[J]. Meitan Xuebao/Journal of the China Coal Society, 2014, 39(7): 1191-1196.
[4] 宫凤强, 李夕兵. 岩爆发生和烈度分级预测的距离判别方法及应用[J]. 岩石力学与工程学报, 2007, 26(5): 1012-1018. doi: 10.3321/j.issn:1000-6915.2007.05.021 GONG Feng-qiang, LI Xi-bing. A distance discriminant analysis method for prediction of possibility and classification of rockburst and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 1012-1018. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.05.021
[5] KIDYBINSKI A. Bursting liability indices of coal[J]. Rock Mech and Min Sci, 1981, 18(6): 295-304.
[6] 宫凤强, 闫景一, 李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据[J]. 岩石力学与工程学报, 2018, 37(9): 1993-2014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809001.htm GONG Feng-qiang, YAN Jing-yi, LI Xi-bing. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 1993-2014. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809001.htm
[7] 李庶林, 冯夏庭, 王泳嘉, 等. 深井硬岩岩爆倾向性评价[J]. 东北大学学报, 2001, 22(1): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200101017.htm LI Shu-lin, FENG Xia-ting, WANG Yong-jia, et al. Evaluation of Rockburst Proneness in a Deep Hard Rock Mine[J]. Journal of Northeastern University, 2001, 22(1): 60-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200101017.htm
[8] 高玮. 基于蚁群聚类算法的岩爆预测研究[J]. 岩土工程学报, 2010, 32(6): 874-880. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006014.htm GAO Wei. Prediction of rock burst based on ant colony clustering algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 874-880. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006014.htm
[9] LIU X Q, XIA Y Y, LIN M Q. Experimental study of rockburst under true-triaxial gradient loading conditions[J]. Geomechanics and Engineering, 2019, 18(5): 481-492.
[10] 夏元友, 吝曼卿, 廖璐璐, 等. 大尺寸试件岩爆试验碎屑分形特征分析[J]. 岩石力学与工程学报, 2014, 33(7): 1358-1365. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407007.htm XIA Yuan-you, LIN Man-qing, LIAO Lu-lu, et al. Fractal characteristic analysis of fragments from rock-burst tests of large-diameter specimens[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1358-1365. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407007.htm
[11] BROWN E T, HOEK E. Trends in relationships between measured in-situ, stresses and depth[J]. International Journal of Rock Mechanics & Mining Sciences, 1978, 15(4): 211-215.
[12] 黄海. 中天山隧道地应力测量及岩爆预测研究[J]. 国防交通工程与技术, 2011, 9(3): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GFJT201103015.htm HUANG Hai. Study of the crustal stress survey and rock burst prediction for the Zhongtianshan Tunnel[J]. Traffic Engineering and Technology for National Defence, 2011, 9(3): 45-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GFJT201103015.htm
[13] 尚彦军, 张镜剑, 傅冰骏. 应变型岩爆三要素分析及岩爆势表达[J]. 岩石力学与工程学报, 2013, 32(8): 1520-1527. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308003.htm SHANG Yan-jun, ZHANG Jing-jian, FU Bing-jun. Analyses of three parameters for strain mode rockburst and expression of rockburst potential[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1520-1527. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308003.htm
[14] 张志强, 关宝树, 翁汉民. 岩爆发生条件的基本分析[J]. 铁道学报, 1998(4): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB804.014.htm ZHANG Zhi-qiang, GUAN Bao-shu, WEN Han-ming, Basic Analysis of Rock Bursting Occurrence Condition[J]. Journal of the China Railway Society, 1998(4): 83-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB804.014.htm
[15] 刘章军, 袁秋平, 李建林. 模糊概率模型在岩爆烈度分级预测中的应用[J]. 岩石力学与工程学报, 2008, 27(增刊1): 3095-3103. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1079.htm LIU Zhang-jun, YUAN Qiu-ping, LI Jian-lin. Application of fuzzy probability model to prediction of classification of rockburst intensity[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 3095-3103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1079.htm
[16] 裴启涛, 李海波, 刘亚群, 等. 基于改进的灰评估模型在岩爆中的预测研究[J]. 岩石力学与工程学报, 2013, 32(10): 2088-2093. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310019.htm PEI Qi-tao, LI Hai-bo, LIU Ya-qun, et al. Rockburst prediction based on a modified grey evaluation model[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10): 2088-2093. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310019.htm
[17] 徐林生. 地下工程岩爆发生条件研究[J]. 重庆交通学院学报, 2005(3): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200503009.htm XU Lin-sheng. Research of rockburst formation condition in underground engineering[J]. Journal of Chongqing Jiaotong University, 2005(3): 31-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200503009.htm
[18] 张传庆, 俞缙, 陈珺, 等. 地下工程围岩潜在岩爆问题评估方法[J]. 岩土力学, 2016, 37(增刊1): 341-349. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1046.htm ZHANG Chuan-qing, YU Jin, CHEN Jun, et al. Evaluation method for potential rockburst in underground engineering[J]. Rock and Soil Mechanics, 2016, 37(S1): 341-349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1046.htm
[19] 陈卫忠, 马池帅, 田洪铭, 等. TBM隧道施工期岩爆预测方法探讨[J]. 岩土力学, 2017, 38(增刊2): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2036.htm CHEN Wei-zhong, MA Chi-shuai, TIAN Hong-ming. Discussion on rockburst predictive method applying to TBM tunnel construction[J]. Rock and Soil Mechanics, 2017, 38(S2): 241-249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2036.htm
[20] ZHOU J, LI X B, SHI X Z. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines[J]. Safety Science, 2012, 50(4): 629-644.
[21] 徐林生, 王兰生. 二郎山公路隧道岩爆发生规律与岩爆预测研究[J]. 岩土工程学报, 1999, 21(5): 569-572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199905009.htm XU Lin-sheng, WANG Lan-sheng. Study on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain road[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 569-572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199905009.htm
[22] 赵军, 袁国庆, 唐世明. 双江口水电站地应力特征及岩爆成因分析与防治建议[J]. 四川地质学报, 2010, 30(4): 500-503. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201004035.htm ZHAO Jun, YUAN Guo-qing, TANG Shi-ming. Characteristics of Ground Stress, Genesis and Control of Rock Burst for the Shuangjiangkou Hydropower Station[J]. Acta Geologica Sichuan, 2010, 30(4): 500-503. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201004035.htm
[23] 郭建强, 赵青, 王军保, 等. 基于弹性应变能岩爆倾向性评价方法研究[J]. 岩石力学与工程学报, 2015, 34(9): 164-171. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509019.htm GUO Jian-qiang, ZHAO Qing, WANG Jun-bao, et al. Rockburst prediction based on elastic strain energy[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 164-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509019.htm