Influences of normal fault dislocation on response of surrounding rock and lining system based on discrete-continuous coupling simulation
-
摘要: 震害记录表明,隧洞结构的破坏多发生在围岩质量差和地层条件有较大变化的断层破碎带。为研究断层错动对围岩-隧洞响应特性的影响,提出基于三维离散-连续耦合理论的跨断层隧洞错断分析方法,并将现有室内模型试验引入验证耦合方法正确性的对比试验中。基于耦合模型,探索细观裂纹不断聚集形成破裂的过程及剪切带的演化规律,研究跨断层隧洞变形机制及内力响应特征,另外,深入分析了衬砌厚度、衬砌混凝土弹性模量和隧洞上覆土层厚度对隧洞受力变形响应的影响。研究结果显示:拉裂纹在上盘内衬砌底部聚集形成倒三角破裂带,剪裂纹呈条带状集中分布在断层错动面处;同时,衬砌在临近断层剪切面处发生急剧变形,上盘内衬砌顶部受压而底部受拉,下盘内衬砌顶部受拉而底部受压;此外,合理范围内提高衬砌厚度及混凝土弹性模量有利于提高衬砌抵抗变形的能力,埋深较大的隧洞在断层错动条件下易受到围岩保护,从而减小变形破坏的程度。研究结果可以为跨断层隧洞的围岩稳定性评价、隧洞抗错断结构设计提供一定参考。Abstract: The seismic damage records show that the destruction of tunnel structure mostly occurs in the fault zone with surrounding rock mass of poor quality and great changes in stratigraphic conditions. In order to study the influences of fault dislocation on the response characteristics of surrounding rock and tunnel, an analytical method based on 3D discrete-continuous coupling theory is proposed, and the existing indoor model tests are introduced into the comparative tests to verify the validity of the coupling method. Based on the coupling model, the process of micro cracks gathering to form fracture and the evolution of shear zone are explored. The deformation mechanism and mechanical response characteristics of a cross-fault tunnel are studied. Besides, the influences of thickness of linings, elastic modulus of concrete and burial depth of the tunnel on its mechanical response and deformation characteristics are analyzed. The results show that the tensile cracks accumulate at the bottom of the tunnel in the hanging wall to form an inverted triangle shear zone, and shear cracks are distributed in strip on the fault plane. Meanwhile, a sharp deformation of linings emerges near the fault plane. In the hanging wall, the top arch is under pressure and the floor is under tension, while, in the footwall, the top arch is under tension and the floor is under pressure. In addition, increasing the thickness and concrete elastic modulus of the linings within a reasonable range is conducive to improving the anti-fault capability of the tunnel. And deep buried tunnel is protected by surrounding rock under fault dislocation to reduce the damage. The research results can provide a certain reference for the stability evaluation of surrounding rock mass and the anti-fault design of tunnels.
-
Keywords:
- tunnel /
- normal fault /
- discrete-continuous coupling /
- micro crack /
- stress and deformation response
-
-
表 1 计算方案
Table 1 Calculation schemes
序号 衬砌厚度/cm 混凝土弹性模量/GPa 隧洞上覆土层厚度/cm 方案1 1.0 1.50 50.0 1.5 2.0 方案2 1.5 1.50 50.0 1.75 2.00 方案3 1.5 1.50 45.0 47.5 50.0 -
[1] 徐前卫, 程盼盼, 朱合华, 等. 跨断层隧道围岩渐进性破坏模型试验及数值模拟[J]. 岩石力学与工程学报, 2016, 35(3): 5-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603001.htm XU Qian-wei, CHENG Pan-pan, ZHU He-hua, et al. Experimental study and numerical simulation on progressive failure characteristics of the fault-crossing tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Enginnering. 2016, 35(3): 5-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603001.htm
[2] 岩土工程勘察规范:GB50021—2001[S]. 2001. Code for Investigation of Geotechnical Engineering: GB50021—2001[S]. 2001. (in Chinese)
[3] KENNER S J, SEGALL P. Postseismic deformation following the 1906 San Francisco earthquake[J]. J Geophys Res Solid Earth, 2000, 105: 13195-13209. doi: 10.1029/2000JB900076
[4] WANG W L, WANG T T, SU J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J]. Tunn Undergr Space Technol Inc Trenchless Technol Res, 2001, 16: 133-150. doi: 10.1016/S0886-7798(01)00047-5
[5] 崔光耀, 纪磊, 王道远, 等. 汶川地震断层破碎带段隧道结构震害分析及震害机理研究[J]. 土木工程学报, 2013(11): 130-135. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201311019.htm CUI Guang-yao, JI Lei, WANG Dao-yuan, et al. Study of model test for anti-breaking technology of reducing dislocation layer undering stick-slip fault dislocation of metro tunnel[J]. China Civil Engineering Journal, 2013(11): 130-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201311019.htm
[6] AHMADI M, MOOSAVI M, JAFARI M K. Experimental investigation of reverse fault rupture propagation through wet granular soil[J]. Engineering Geology, 2018, 239: 229-240. doi: 10.1016/j.enggeo.2018.03.032
[7] LIN M, CHUNG C, JENG F, et al. The deformation of overburden soil induced by thrust faulting and its impact on underground tunnels[J]. Engineering Geology, 2007, 92(3/4): 110-132.
[8] CAI Q P, PENG J M, CHARLES W W N, et al. Centrifuge and numerical modelling of tunnel intersected by normal fault rupture in sand[J]. Computers and Geotechnics, 2019, 111: 137-146. doi: 10.1016/j.compgeo.2019.03.010
[9] KIANI M, AKHLAGHI T, GHALANDARZADEH A. Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults[J]. Tunnelling and Underground Space Technology, 2016, 51: 108-119. doi: 10.1016/j.tust.2015.10.005
[10] 刘学增, 王煦霖, 林亮伦. 45°倾角正断层粘滑错动对隧道影响试验分析[J]. 同济大学学报(自然科学版), 2014, 42(1): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201401009.htm LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Modeling experiment on effect of normal fault with 45° dip angle stick-slip dislocation on tunnel[J]. Journal of Tongji University (Natural Science), 2014, 42(1): 44-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201401009.htm
[11] 刘学增, 王煦霖, 林亮伦. 60°倾角正断层黏滑错动对山岭隧道影响的试验研究[J]. 土木工程学报, 2014, 47(2): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201402016.htm LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Model experimental study on influence of normal fault with 60° dip angle stick-slip dislocation on mountain tunnel[J]. China Civil Engineering Journal, 2014, 47(2): 121-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201402016.htm
[12] 刘学增, 王煦霖, 林亮伦. 75°倾角正断层黏滑错动对公路隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2013, 32(8): 1714-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308026.htm LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Model experiment on effect of normal fault with 75°dipangle stick-slip dislocation on highway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1714-1720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308026.htm
[13] MOHAMMAD H, ABBAS S. DEM-aided study of shear band formation in dip-slip faulting through granular soils[J]. Computers and Geotechnics, 2016, 71: 221-236.
[14] NAEIJ M, SOROUSH A, JANVANMARDI Y. Numerical investigation of the effects of embedment on the reverse fault-foundation interaction[J]. Computers and Geotechnics, 2019, 113: 1-12.
[15] GHADIMI C A, TAHGHIGHI H. Numerical finite element analysis of underground tunnel crossing an active reverse fault: a case study on the Sabzkouh segmental tunnel[J]. Geomechanics and Geoengineering, 2019: 1-12.
[16] JEON S, KIM J, SEO Y, et al. Effect of a fault and weak plane on the stability of a tunnel in rock-a scaled model test and numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 658-663.
[17] Itasca Consulting Group Inc. PFC (Particle Flow Code) User's Manual Version 5.0[M]. Minneapolis: Itasca Consulting Group Inc., 2014.
[18] Itasca Consulting Group Inc. FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) User's Manual Version 6.0[M]. Minneapolis: Itasca Consulting Group Inc., 2017.
[19] BERTULANI C A. Relativistic continuum-continuum coupling in the dissociation of halo nuclei[J]. Physical Review Letters, 2005, 94(7): 072701.
[20] CAI M, KAISER P K, MORIOKA H, et al. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[J]. Int J Rock Mech Min Sci, 2007, 44: 550-564.
[21] SEVI A, GE L. Cyclic behaviors of railroad ballast within theparallel gradation scaling framework[J]. Journal of Materialsin Civil Engineering, 2012, 24(7): 797-804.