• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

正断层错动对围岩-衬砌体系响应影响的离散-连续耦合模拟研究

马亚丽娜, 崔臻, 盛谦, 周光新, 王天强

马亚丽娜, 崔臻, 盛谦, 周光新, 王天强. 正断层错动对围岩-衬砌体系响应影响的离散-连续耦合模拟研究[J]. 岩土工程学报, 2020, 42(11): 2088-2097. DOI: 10.11779/CJGE202011014
引用本文: 马亚丽娜, 崔臻, 盛谦, 周光新, 王天强. 正断层错动对围岩-衬砌体系响应影响的离散-连续耦合模拟研究[J]. 岩土工程学报, 2020, 42(11): 2088-2097. DOI: 10.11779/CJGE202011014
MA Ya-lina, CUI Zhen, SHENG Qian, ZHOU Guang-xin, WANG Tian-qiang. Influences of normal fault dislocation on response of surrounding rock and lining system based on discrete-continuous coupling simulation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2088-2097. DOI: 10.11779/CJGE202011014
Citation: MA Ya-lina, CUI Zhen, SHENG Qian, ZHOU Guang-xin, WANG Tian-qiang. Influences of normal fault dislocation on response of surrounding rock and lining system based on discrete-continuous coupling simulation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2088-2097. DOI: 10.11779/CJGE202011014

正断层错动对围岩-衬砌体系响应影响的离散-连续耦合模拟研究  English Version

基金项目: 

国家重点研发计划项目 2016YFC0401803

国家自然科学基金项目 51779253

国家自然科学基金项目 41672319

国家自然科学基金项目 51991393

国家自然科学基金项目 52079133

长江科学院开放研究基金项目 CKWV2016388/KY

深部岩土力学与地下工程国家重点实验室开放基金课题 SKLGDUEK1912

详细信息
    作者简介:

    马亚丽娜(1993-),女,博士研究生,主要从事岩土工程静动力稳定性评价研究。E-mail:mayalina@126.com

    通讯作者:

    盛谦, E-mail:qsheng@whrsm.ac.cn

  • 中图分类号: TU45

Influences of normal fault dislocation on response of surrounding rock and lining system based on discrete-continuous coupling simulation

  • 摘要: 震害记录表明,隧洞结构的破坏多发生在围岩质量差和地层条件有较大变化的断层破碎带。为研究断层错动对围岩-隧洞响应特性的影响,提出基于三维离散-连续耦合理论的跨断层隧洞错断分析方法,并将现有室内模型试验引入验证耦合方法正确性的对比试验中。基于耦合模型,探索细观裂纹不断聚集形成破裂的过程及剪切带的演化规律,研究跨断层隧洞变形机制及内力响应特征,另外,深入分析了衬砌厚度、衬砌混凝土弹性模量和隧洞上覆土层厚度对隧洞受力变形响应的影响。研究结果显示:拉裂纹在上盘内衬砌底部聚集形成倒三角破裂带,剪裂纹呈条带状集中分布在断层错动面处;同时,衬砌在临近断层剪切面处发生急剧变形,上盘内衬砌顶部受压而底部受拉,下盘内衬砌顶部受拉而底部受压;此外,合理范围内提高衬砌厚度及混凝土弹性模量有利于提高衬砌抵抗变形的能力,埋深较大的隧洞在断层错动条件下易受到围岩保护,从而减小变形破坏的程度。研究结果可以为跨断层隧洞的围岩稳定性评价、隧洞抗错断结构设计提供一定参考。
    Abstract: The seismic damage records show that the destruction of tunnel structure mostly occurs in the fault zone with surrounding rock mass of poor quality and great changes in stratigraphic conditions. In order to study the influences of fault dislocation on the response characteristics of surrounding rock and tunnel, an analytical method based on 3D discrete-continuous coupling theory is proposed, and the existing indoor model tests are introduced into the comparative tests to verify the validity of the coupling method. Based on the coupling model, the process of micro cracks gathering to form fracture and the evolution of shear zone are explored. The deformation mechanism and mechanical response characteristics of a cross-fault tunnel are studied. Besides, the influences of thickness of linings, elastic modulus of concrete and burial depth of the tunnel on its mechanical response and deformation characteristics are analyzed. The results show that the tensile cracks accumulate at the bottom of the tunnel in the hanging wall to form an inverted triangle shear zone, and shear cracks are distributed in strip on the fault plane. Meanwhile, a sharp deformation of linings emerges near the fault plane. In the hanging wall, the top arch is under pressure and the floor is under tension, while, in the footwall, the top arch is under tension and the floor is under pressure. In addition, increasing the thickness and concrete elastic modulus of the linings within a reasonable range is conducive to improving the anti-fault capability of the tunnel. And deep buried tunnel is protected by surrounding rock under fault dislocation to reduce the damage. The research results can provide a certain reference for the stability evaluation of surrounding rock mass and the anti-fault design of tunnels.
  • 图  1   FLAC3D和PFC3D耦合过程示意图

    Figure  1.   Schematic diagram of coupling process of FLAC3D and PFC3D

    图  2   几何尺寸及关键断面布置示意图

    Figure  2.   Geometric dimension and arrangement of monitoring sections

    图  3   耦合模型

    Figure  3.   Coupling model

    图  4   耦合模型隧洞结构及网格划分

    Figure  4.   Tunnel structure and grid division of coupling model

    图  5   耦合模型监测断面及测点布设图

    Figure  5.   Arrangement of monitoring sections and measuring points of coupling model

    图  6   断层垂直错动量6 mm条件下衬砌相对竖向应力

    Figure  6.   Relative vertical stresses of linings under fault vertical displacement of 6 mm

    图  7   破裂带几何特征

    Figure  7.   Geometry of shear zone

    图  8   不同断层错动量下的裂纹分布与传播

    Figure  8.   Distribution and propagation of cracks under different fault dislocation magnitudes

    图  9   剪切带示意图

    Figure  9.   Schematic diagram of shear zone

    图  10   不同断层错动量下隧洞衬砌竖向位移

    Figure  10.   Vertical displacements of tunnel linings under different fault displacements

    图  11   不同断层错动量下隧洞衬砌轴向位移

    Figure  11.   Axial displacements of tunnel linings under different fault displacements

    图  12   不同断层错动量下隧洞衬砌轴向应力

    Figure  12.   Axial stresses of tunnel linings under different fault displacements

    图  13   断层错动下围岩及衬砌综合响应示意图

    Figure  13.   Comprehensive response of surrounding rock and linings under fault dislocation

    图  14   不同衬砌厚度下隧洞受力变形分布曲线

    Figure  14.   Distribution curves of stress and deformation of tunnel under different lining thicknesses

    图  15   不同衬砌混凝土弹性模量下隧洞受力变形分布曲线

    Figure  15.   Distribution curves of stress and deformation of tunnel under different elastic moduli of concrete

    图  16   不同隧洞上覆土厚度下隧洞受力变形分布曲线

    Figure  16.   Distribution curves of stress and deformation of tunnel under different thicknesses of overburden

    表  1   计算方案

    Table  1   Calculation schemes

    序号衬砌厚度/cm混凝土弹性模量/GPa隧洞上覆土层厚度/cm
    方案11.01.5050.0
    1.5
    2.0
    方案21.51.5050.0
    1.75
    2.00
    方案31.51.5045.0
    47.5
    50.0
    下载: 导出CSV
  • [1] 徐前卫, 程盼盼, 朱合华, 等. 跨断层隧道围岩渐进性破坏模型试验及数值模拟[J]. 岩石力学与工程学报, 2016, 35(3): 5-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603001.htm

    XU Qian-wei, CHENG Pan-pan, ZHU He-hua, et al. Experimental study and numerical simulation on progressive failure characteristics of the fault-crossing tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Enginnering. 2016, 35(3): 5-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603001.htm

    [2] 岩土工程勘察规范:GB50021—2001[S]. 2001.

    Code for Investigation of Geotechnical Engineering: GB50021—2001[S]. 2001. (in Chinese)

    [3]

    KENNER S J, SEGALL P. Postseismic deformation following the 1906 San Francisco earthquake[J]. J Geophys Res Solid Earth, 2000, 105: 13195-13209. doi: 10.1029/2000JB900076

    [4]

    WANG W L, WANG T T, SU J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J]. Tunn Undergr Space Technol Inc Trenchless Technol Res, 2001, 16: 133-150. doi: 10.1016/S0886-7798(01)00047-5

    [5] 崔光耀, 纪磊, 王道远, 等. 汶川地震断层破碎带段隧道结构震害分析及震害机理研究[J]. 土木工程学报, 2013(11): 130-135. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201311019.htm

    CUI Guang-yao, JI Lei, WANG Dao-yuan, et al. Study of model test for anti-breaking technology of reducing dislocation layer undering stick-slip fault dislocation of metro tunnel[J]. China Civil Engineering Journal, 2013(11): 130-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201311019.htm

    [6]

    AHMADI M, MOOSAVI M, JAFARI M K. Experimental investigation of reverse fault rupture propagation through wet granular soil[J]. Engineering Geology, 2018, 239: 229-240. doi: 10.1016/j.enggeo.2018.03.032

    [7]

    LIN M, CHUNG C, JENG F, et al. The deformation of overburden soil induced by thrust faulting and its impact on underground tunnels[J]. Engineering Geology, 2007, 92(3/4): 110-132.

    [8]

    CAI Q P, PENG J M, CHARLES W W N, et al. Centrifuge and numerical modelling of tunnel intersected by normal fault rupture in sand[J]. Computers and Geotechnics, 2019, 111: 137-146. doi: 10.1016/j.compgeo.2019.03.010

    [9]

    KIANI M, AKHLAGHI T, GHALANDARZADEH A. Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults[J]. Tunnelling and Underground Space Technology, 2016, 51: 108-119. doi: 10.1016/j.tust.2015.10.005

    [10] 刘学增, 王煦霖, 林亮伦. 45°倾角正断层粘滑错动对隧道影响试验分析[J]. 同济大学学报(自然科学版), 2014, 42(1): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201401009.htm

    LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Modeling experiment on effect of normal fault with 45° dip angle stick-slip dislocation on tunnel[J]. Journal of Tongji University (Natural Science), 2014, 42(1): 44-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201401009.htm

    [11] 刘学增, 王煦霖, 林亮伦. 60°倾角正断层黏滑错动对山岭隧道影响的试验研究[J]. 土木工程学报, 2014, 47(2): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201402016.htm

    LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Model experimental study on influence of normal fault with 60° dip angle stick-slip dislocation on mountain tunnel[J]. China Civil Engineering Journal, 2014, 47(2): 121-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201402016.htm

    [12] 刘学增, 王煦霖, 林亮伦. 75°倾角正断层黏滑错动对公路隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2013, 32(8): 1714-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308026.htm

    LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Model experiment on effect of normal fault with 75°dipangle stick-slip dislocation on highway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1714-1720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308026.htm

    [13]

    MOHAMMAD H, ABBAS S. DEM-aided study of shear band formation in dip-slip faulting through granular soils[J]. Computers and Geotechnics, 2016, 71: 221-236.

    [14]

    NAEIJ M, SOROUSH A, JANVANMARDI Y. Numerical investigation of the effects of embedment on the reverse fault-foundation interaction[J]. Computers and Geotechnics, 2019, 113: 1-12.

    [15]

    GHADIMI C A, TAHGHIGHI H. Numerical finite element analysis of underground tunnel crossing an active reverse fault: a case study on the Sabzkouh segmental tunnel[J]. Geomechanics and Geoengineering, 2019: 1-12.

    [16]

    JEON S, KIM J, SEO Y, et al. Effect of a fault and weak plane on the stability of a tunnel in rock-a scaled model test and numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 658-663.

    [17]

    Itasca Consulting Group Inc. PFC (Particle Flow Code) User's Manual Version 5.0[M]. Minneapolis: Itasca Consulting Group Inc., 2014.

    [18]

    Itasca Consulting Group Inc. FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) User's Manual Version 6.0[M]. Minneapolis: Itasca Consulting Group Inc., 2017.

    [19]

    BERTULANI C A. Relativistic continuum-continuum coupling in the dissociation of halo nuclei[J]. Physical Review Letters, 2005, 94(7): 072701.

    [20]

    CAI M, KAISER P K, MORIOKA H, et al. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[J]. Int J Rock Mech Min Sci, 2007, 44: 550-564.

    [21]

    SEVI A, GE L. Cyclic behaviors of railroad ballast within theparallel gradation scaling framework[J]. Journal of Materialsin Civil Engineering, 2012, 24(7): 797-804.

图(16)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-26
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-10-31

目录

    /

    返回文章
    返回