Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑颗粒黏结效应的非饱和土水-力耦合边界面模型

韩博文, 蔡国庆, 李舰, 赵成刚

韩博文, 蔡国庆, 李舰, 赵成刚. 考虑颗粒黏结效应的非饱和土水-力耦合边界面模型[J]. 岩土工程学报, 2020, 42(11): 2059-2068. DOI: 10.11779/CJGE202011011
引用本文: 韩博文, 蔡国庆, 李舰, 赵成刚. 考虑颗粒黏结效应的非饱和土水-力耦合边界面模型[J]. 岩土工程学报, 2020, 42(11): 2059-2068. DOI: 10.11779/CJGE202011011
HAN Bo-wen, CAI Guo-qing, LI Jian, ZHAO Cheng-gang. Hydro-mechanical coupling bounding surface model for unsaturated soils considering bonding effect of particles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2059-2068. DOI: 10.11779/CJGE202011011
Citation: HAN Bo-wen, CAI Guo-qing, LI Jian, ZHAO Cheng-gang. Hydro-mechanical coupling bounding surface model for unsaturated soils considering bonding effect of particles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2059-2068. DOI: 10.11779/CJGE202011011

考虑颗粒黏结效应的非饱和土水-力耦合边界面模型  English Version

基金项目: 

国家自然科学基金项目 52078031

国家自然科学基金项目 51722802

国家自然科学基金项目 U1834206

北京市自然科学基金面上项目 8202038

详细信息
    作者简介:

    韩博文(1992—),男,博士研究生,主要从事非饱和土力学相关研究。E-mail:18115022@bjtu.edu.cn

    通讯作者:

    蔡国庆, E-mail:guoqing.cai@bjtu.edu.cn

  • 中图分类号: TU43

Hydro-mechanical coupling bounding surface model for unsaturated soils considering bonding effect of particles

  • 摘要: 颗粒间黏结效应对非饱和土水-力耦合特性影响显著,建立考虑黏结效应的非饱和土本构模型,对于准确分析非饱和土的水-力耦合特性具有重要意义。在边界面塑性理论框架下,建立了一个同时考虑基质吸力、饱和度和孔隙结构对黏结效应影响的非饱和土水-力耦合模型。对于力学部分,选取有效应力与黏结变量作为本构变量,建立了黏结变量与e/es之间的关系,并基于边界面塑性理论对非饱和土变形特性进行描述;对于水力部分,建立了考虑变形影响的水力滞后土-水特征曲线方程。利用膨润土-高岭土混合土、重塑高岭土的试验结果对所建立的模型进行了参数标定和模型验证,结果表明,所建立模型能够合理预测非饱和土的水-力耦合特性。
    Abstract: The interparticle bonding effect has a significant influence on the hydro-mechanical coupling characteristics of unsaturated soils. Establishing a constitutive model for unsaturated soils considering the bonding effect is of great significance for accurately analyzing their hydro-mechanical coupling characteristics. Based on the theory of bounding surface plasticity, a hydro-mechanical coupling model for unsaturated soils considering the influences of matric suction, degree of saturation and pore structure on the bonding effect is established. For the mechanics part, the effective stress and bonding variable are selected as the constitutive variables, the relationship between the bonding variable and e/es is established, and the deformation characteristics of unsaturated soils are described based on the theory of bounding surface plasticity. For the hydraulic part, a hydraulic hysteresis soil-water characteristic curve equation considering the effect of deformation is established. The experimental results of bentonite-kaolin mixture and reconstituted kaolin are used for parameter calibration and model verification of the proposed model. The results show that the proposed model can reasonably predict the hydro-mechanical coupling characteristics of unsaturated soils.
  • 图  1   f(s)s关系曲线

    Figure  1.   Curve of relation betweenf(s) ands

    图  2   压缩状态面及压缩曲线示意图

    Figure  2.   Diagrams of compression state surface and compression curve

    图  3   p-q-ζ空间内的边界面

    Figure  3.   Bounding surfaces inp-q-ζ space

    图  4   边界面映射法则

    Figure  4.   Mapping rules of bounding surface

    图  5   扫描曲线示意图

    Figure  5.   Diagram of scanning curve

    图  6   参数a,b标定

    Figure  6.   Calibration of parametersa,b

    图  7   土水特征曲线参数标定

    Figure  7.   Calibration of soil-water characteristic curve parameters

    图  8   模型预测与试验数据对比

    Figure  8.   Comparison between model predictions and experimental data

    图  9   模型预测与试验数据对比

    Figure  9.   Comparison between model predictions and experimental data

    图  10   参数a,b标定

    Figure  10.   Calibration of parametersa,b

    图  11   模型预测与试验数据对比

    Figure  11.   Comparison between model predictions and experimental data

    表  1   膨润土-高岭土混合土模型参数

    Table  1   Model parameters of bentonite-kaolin mixture

    abλκNp0/kPam1dm1w
    0.3491.3660.1440.041.759170.00470.0195
    m1m2m3m4ηγ0DSres
    0.01956.9113.9290.036360.455100.05
    下载: 导出CSV

    表  2   重塑高岭土模型参数

    Table  2   Model parameters of reconstituted kaolin

    abλκNp0/kPaMG/kPa
    0.3591.2860.1280.021.64180.7310000
    m1m2m3m4γ0DSres 
    0.03788.0333.7470.03635510.05 
    下载: 导出CSV
  • [1]

    GALLIPOLI D, GENS A, SHARMA R, et al. An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour[J]. Géotechnique, 2003, 53(1): 123-135. doi: 10.1680/geot.2003.53.1.123

    [2] 邵龙潭, 郭晓霞, 郑国锋. 粒间应力、土骨架应力和有效应力[J]. 岩土工程学报, 2015, 37(8): 1478-1483. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201508022.htm

    SHAO Long-tan, GUO Xiao-xia, ZHENG Guo-feng. Intergranular stress, soil skeleton stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1478-1483. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201508022.htm

    [3]

    BISHOP A W. The principle of effective stress[J]. Teknisk Ukeblad, 1959, 106(39): 859-863.

    [4]

    ALONSO E E, GENS A, JOSA A. Constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430. doi: 10.1680/geot.1990.40.3.405

    [5]

    FREDLUND D G, MORGENSTERN N R. Stress state variables for unsaturated soils[J]. Journal of Geotechnical and Geoenviromnental Engineering, 1977, 103(5): 447-466.

    [6] 沈珠江. 广义吸力和非饱和土的统一变形理论[J]. 岩土工程学报, 1996, 18(2): 1-9. doi: 10.3321/j.issn:1000-4548.1996.02.001

    SHEN Zhu-jiang. Generalized suctions and unified deformation theory for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(2): 1-9. (in Chinese) doi: 10.3321/j.issn:1000-4548.1996.02.001

    [7] 汤连生, 王思敬. 湿吸力及非饱和土的有效应力原理探讨[J]. 岩土工程学报, 2000, 22(1): 83-88. doi: 10.3321/j.issn:1000-4548.2000.01.015

    TANG Lian-sheng, WANG Si-jing. Absorbed suction and principle of effective stress in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 83-88. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.01.015

    [8]

    WHEELER S J, SHARMA R J, BUISSON M S R. Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils[J]. Géotechnique, 2003, 53(1): 41-54. doi: 10.1680/geot.2003.53.1.41

    [9] 孙德安. 非饱和土的水力和力学特性及其弹塑性描述[J]. 岩土力学, 2009, 30(11): 3217-3231. doi: 10.3969/j.issn.1000-7598.2009.11.001

    SUN De-an. Hydro-mechanical behaviours of unsaturated soils and their elastoplastic modelling[J]. Rock and Soil Mechanics, 2009, 30(11): 3217-3231. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.11.001

    [10]

    ZHOU A N, SHENG D, SLOAN S W, et al. Interpretation of unsaturated soil behaviour in the stress-Saturation space, I: volume change and water retention behaviour[J]. Computers and Geotechnics, 2012, 43: 178-187. doi: 10.1016/j.compgeo.2012.04.010

    [11]

    HU R, LIU H H, CHEN Y, et al. A constitutive model for unsaturated soils with consideration of inter-particle bonding[J]. Computers and Geotechnics, 2014, 59: 127-144. doi: 10.1016/j.compgeo.2014.03.007

    [12]

    MA T T, WEI C F, XIA X L, et al. Constitutive model of unsaturated soils considering the effect of intergranular physicochemical forces[J]. Journal of Engineering Mechanics. 2016, 142(11): 04016088. doi: 10.1061/(ASCE)EM.1943-7889.0001146

    [13]

    ALONSO E E, PEREIRA J M, VAUNAT J, et al. A microstructurally based effective stress for unsaturated soils[J]. Géotechnique, 2010, 60(12): 913-925. doi: 10.1680/geot.8.P.002

    [14] 蔡国庆, 王亚南, 周安楠, 等. 考虑微观孔隙结构的非饱和土水-力耦合本构模型[J]. 岩土工程学报, 2018, 40(4): 618-624. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804008.htm

    CAI Guo-qing, WANG Ya-nan, ZHOU An-nan, et al. A microstructure-dependent hydro-mechanical coupled constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 618-624. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804008.htm

    [15] 陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402002.htm

    CHEN Zheng-han. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402002.htm

    [16]

    DAFALIAS Y F, HERRMANN L R. Bouding surface formulation of soil plasticity[C]//Soil Mechanics-Transient and Cyclic Loads, 1982, New Yor.

    [17] 杨杰, 尹振宇, 黄宏伟, 等. 基于扰动状态概念硬化参量的结构性黏土边界面模型[J]. 岩土工程学报, 2017, 39(3): 554-561. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703028.htm

    YANG Jie, YIN Zhen-yu, HUANG Hong-wei, et al. Bounding surface plasticity model for structured clays using disturbed state concept-based hardening variables[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 554-561. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703028.htm

    [18] 张卫华, 赵成刚, 傅方. 饱和砂土相变状态边界面本构模型[J]. 岩土工程学报, 2013, 35(5): 930-939. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305022.htm

    ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305022.htm

    [19] 黄茂松, 杨超, 崔玉军. 循环荷载下非饱和结构性土的边界面模型[J]. 岩土工程学报, 2009, 31(6): 817-823. doi: 10.3321/j.issn:1000-4548.2009.06.001

    HUANG Mao-song, YANG Chao, CUI Yu-jun. Elasto- plastic bounding surface model for unsaturated soils under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 817-823. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.06.001

    [20] 李舰, 赵成刚, 刘艳, 等. 适用于膨胀性非饱和土的边界面模型的数值实现[J]. 岩石力学与工程学报, 2017, 36(10): 2551-2562. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710024.htm

    LI Jian, ZHAO Cheng-gang, LIU Yan, et al. Numerical implementation of a bounding surface model for unsaturated expansive clays[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2551-2562. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710024.htm

    [21]

    RUSSELL A R, KHALILI N. A unified boundig surface plasticity model for unsaturated soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30: 181-212.

    [22]

    FISHER R A. On the capillary forces in an ideal soil: correction of formulae given by W B Haines[J]. The Journal of Agricultural Science, 1926, 16(3): 492-505.

    [23]

    GALLIPOLI D, GENS A, CHEN G J, D'ONZA F. Modelling unsaturated soil behaviour during normal consolidation and at critical state[J]. Computers and Geotechnics, 2008, 35: 825-834.

    [24]

    BARDET J P. Bounding surface plasticity model for sands[J]. Journal of Engineering Mechanics, 1986, 112: 1198-1217.

    [25]

    ZIENKIEWICZ O C, LEUNG K H, PASTOR M. Simple model for transient soil loading in earthquake analysis: I Basic model and its application[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9: 453-476.

    [26]

    GALLIPOLI D, WHEELER S J, KARSTUNEN M. Modelling the variation of degree of saturation in a deformable unsaturated soil[J]. Géotechnique, 2003, 53(1): 105-112.

    [27]

    GALLIPOLI D. A hysteretic soil-water retention model accounting for cyclic variations of suction and void ratio[J]. Géotechnique, 2012, 62(7): 605-616.

    [28]

    HU R, CHEN Y F, LIU H H, et al. A water retention curve and unsaturated hydraulic conductivity model for deformable soils: consideration of the change in pore-size distribution[J]. Géotechnique, 2013, 63(16): 1389-1405.

    [29] 蔡国庆, 田京京, 李舰, 等. 考虑变形及滞回效应影响的三维土-水特征曲面模型[J]. 土木工程学报, 2019, 52(11): 97-107. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201911011.htm

    CAI Guo-qing, TIAN Jing-jing, LI Jian, et al. A three-dimensional soil water characteristic surface model considering deformation and hysteresis effect[J]. China Civil Engineering Journal, 2019, 52(11): 97-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201911011.htm

    [30]

    VAN Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44: 892-898.

    [31]

    WEI C F, DEWOOLKAR M M. Formulation of capillary hysteresis with internal state variables[J]. Water Resources Research, 2006, 42: W07405.

    [32]

    HU R, CHEN Y F, LIU H H, et al. A coupled stress-strain and hydraulic hysteresis model for unsaturated soils: Thermodynamic analysis and model evaluation[J]. Computers and Geotechnics, 2015, 63: 159-170.

    [33]

    SHARMA R S. Mechanical Behaviour of Unsaturated Highly Expansive Clays[D]. Glasgow: University of Oxford, 1998.

    [34]

    SIVAKUMAR V. A Critical State Framework for Unsaturated Soil[D]. Glasgow: University of Sheffield, 1993.

    [35]

    GALLIPOLI D. Constitutive and Numerical Modelling of Unsaturated Soils[D]. Glasgow: University of Glasgow, 2000.

  • 期刊类型引用(7)

    1. 岳玮琦,顾展飞,苏伟林. 盾构滚刀作用下混凝土材料破碎分形与能耗. 材料科学与工程学报. 2023(06): 995-1000+1010 . 百度学术
    2. 许宇,李兴高,杨益,牟举文,苏伟林. 盾构切刀切削混凝土过程中的动态响应试验. 哈尔滨工业大学学报. 2021(05): 182-189 . 百度学术
    3. 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟. 浙江大学学报(工学版). 2020(06): 1106-1114 . 百度学术
    4. 魏世广,蒋敏敏,肖昭然,周长明. 竖向荷载作用下盾构开挖引起的桩身竖向响应分析. 三峡大学学报(自然科学版). 2020(06): 68-72 . 百度学术
    5. 王渭,蒋云鹏. 不同条件下顶管法施工对下穿隧道的作用特性研究. 交通世界. 2019(15): 122-123 . 百度学术
    6. 黄启舒,孟庆生. 公路隧道下穿既有桥梁的施工影响及工程措施研究. 公路与汽运. 2019(05): 144-146 . 百度学术
    7. 郭力,李太杰. 城市桥梁桩基施工对既有盾构隧道的影响研究. 公路工程. 2019(05): 118-122+187 . 百度学术

    其他类型引用(14)

图(11)  /  表(2)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  26
  • PDF下载量:  150
  • 被引次数: 21
出版历程
  • 收稿日期:  2020-02-08
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-10-31

目录

    /

    返回文章
    返回