• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

岩石爆破中孔内起爆位置对爆炸能量传输的调控作用研究

高启栋, 卢文波, 冷振东, 王亚琼, 孙鹏昌, 陈明

高启栋, 卢文波, 冷振东, 王亚琼, 孙鹏昌, 陈明. 岩石爆破中孔内起爆位置对爆炸能量传输的调控作用研究[J]. 岩土工程学报, 2020, 42(11): 2050-2058. DOI: 10.11779/CJGE202011010
引用本文: 高启栋, 卢文波, 冷振东, 王亚琼, 孙鹏昌, 陈明. 岩石爆破中孔内起爆位置对爆炸能量传输的调控作用研究[J]. 岩土工程学报, 2020, 42(11): 2050-2058. DOI: 10.11779/CJGE202011010
GAO Qi-dong, LU Wen-bo, LENG Zhen-dong, WANG Ya-qiong, SUN Peng-chang, CHEN Ming. Regulating effect of detonator location in blast-holes on transmission of explosion energy in rock blasting[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2050-2058. DOI: 10.11779/CJGE202011010
Citation: GAO Qi-dong, LU Wen-bo, LENG Zhen-dong, WANG Ya-qiong, SUN Peng-chang, CHEN Ming. Regulating effect of detonator location in blast-holes on transmission of explosion energy in rock blasting[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2050-2058. DOI: 10.11779/CJGE202011010

岩石爆破中孔内起爆位置对爆炸能量传输的调控作用研究  English Version

基金项目: 

国家自然科学基金项目 52009003

国家自然科学基金项目 51809016

中央高校基本科研业务费专项 300102210123

水工岩石力学教育部重点实验室开放研究基金项目 RMHSE1903

详细信息
    作者简介:

    高启栋(1991—),男,讲师,博士,主要从事工程爆破与岩石动力学等相关的教学与科研工作。E-mail:qdgao@chd.edu.cn

    通讯作者:

    卢文波, E-mail:wblu@whu.edu.cn

  • 中图分类号: TU45

Regulating effect of detonator location in blast-holes on transmission of explosion energy in rock blasting

  • 摘要: 从爆炸能量传输和爆炸应力场分布的角度,结合柱状药包爆破过程的数值模拟,揭示了起爆位置的影响作用机制,并开展了现场爆破试验研究,综合评价了上部、底部及中部3种传统起爆位置下爆炸能量的空间分布及爆破效果,设想了一种改进的孔内起爆雷管布置方案。结果表明,起爆位置对传入炮孔周围岩体的爆炸能量具有一定的调控作用,爆炸能量偏向于爆轰波传播的正向传输,起爆雷管的位置决定着爆炸能量沿炮孔轴向的分布。在台阶爆破中,孔底起爆时,爆炸能量偏向于孔口传输,可形成较为理想的爆破漏斗,且能减轻对孔底岩体的损伤与扰动,但其易于形成根底或造成欠挖,而适当上调雷管位置,会使部分爆炸能量向孔底传输,有助于加强孔底岩体的破碎及减少根底。以往多推荐的孔底起爆并非总是最优选择,应根据不同的工程目的及现场情况,适时地调整起爆雷管的位置,以充分发挥其对爆炸能量传输的调控作用,从而实现对炸药能量的优化利用。
    Abstract: Based on the numerical simulation of a cylindrical explosive charge, the acting mechanism of the detonator location is analyzed from the views of the transmission of explosion energy and the distribution of blasting stress field. Meanwhile, the on-site blasting experiment investigation is also conducted. Finally, the spatial distribution of the explosion energy as well as the blasting outcome under three different traditional detonator locations (including top, bottom and mid-point locations) is comprehensively evaluated. As a result, an improved scheme for the layout of in-hole detonators is proposed. The results indicate that the detonator location plays an important role in the transmission of explosion energy, and it determines the spatial distribution of the explosion energy along the blast-hole axis. The explosion energy is preferentially transmitted to the front direction of the detonation wave. In bench blasting, the explosion energy is preferentially transmitted to the hole-collar under bottom initiation, and it can form relatively better blasting crater. Moreover, the bottom initiation can reduce the damage and disturbance towards the rock mass below the hole-bottom, but it may induce serious toe rocks or under break. The problems of poor rock fragmentation and toe rocks at the hole-bottom can be relieved if moving the detonator upwards, as some explosion energy is transmitted to the hole-bottom in this case. The traditional recommendation of the bottom initiation is not always the best choice, whereas the detonator location should be regulated in time according to special engineering purposes and onsite situations so as to achieve the optimal utilization of the explosion energy.
  • 图  1   柱状药包爆轰产物一维流动模型[8]

    Figure  1.   One-dimensional flow model for explosive products of cylindrical charge[8]

    图  2   柱状药包应力场的计算模型

    Figure  2.   Computational model for blasting stress field of cylindrical charge

    图  3   柱状药包激发的峰值应力等值线图

    Figure  3.   Contour lines of peak blasting stress induced by cylindrical charge

    图  4   柱状药包爆破的有限元模型

    Figure  4.   Finite element model for blasting of cylindrical charge

    图  5   柱状药包爆破时周围岩体的损伤分布

    Figure  5.   Damage distribution of surrounding of rock mass cylindrical charge

    图  6   单孔爆破试验起爆网络

    Figure  6.   Initiation network in single-hole blasting experiment

    图  7   单孔爆破试验装药结构

    Figure  7.   Charge structures in single-hole blasting experiment

    图  8   单孔爆破试验中爆破振动测点布置示意图

    Figure  8.   Layout of blasting vibration sensors in single-hole blasting experiment

    图  9   单孔爆破试验中爆后孔口岩体的形态

    Figure  9.   Features of rock mass after blasting in single-hole blasting experiment

    图  10   单孔爆破试验实测典型爆破振动时程曲线(#2)

    Figure  10.   Time histories of measured typical blasting vibration in single-hole blasting experiment (No. 2)

    图  11   单孔爆破试验中不同起爆情况下的PPV比较

    Figure  11.   Comparison of PPV under different detonator locations in single-hole blasting experiemnt

    图  12   群孔爆破试验典型炮孔装药结构

    Figure  12.   Typical charge structures in multi-hole blasting experiment

    图  13   群孔爆破试验起爆网络示意图

    Figure  13.   Initiation network in multi-hole blasting experiment

    图  14   群孔爆破试验中典型声波速度曲线(P2)

    Figure  14.   Typical curves of sonic velocity in multi-hole blasting experiment (P2)

    图  15   群孔爆破试验中不同起爆情况下超欠挖值的比较

    Figure  15.   Comparison of over/under break under different detonator locations in multi-hole blasting experiment

    图  16   不同起爆情况下爆炸能量的空间分布及相应的破碎轮廓

    Figure  16.   Distribution of explosion energy and corresponding breakage profile under different detonator locations

    图  17   一种改进的孔内起爆雷管布置方案

    Figure  17.   Improved scheme for layout of in-hole detonators

    表  1   群孔爆破试验声波检测结果

    Table  1   Results of acoustic detection in multi-hole blasting experiment

    试验区声波孔爆前平均声波速度/(m·s-1)爆后平均声波速度/(m·s-1)损伤深度/m
    η≥10%η<10%
    Ⅰ区P14700377846080.74
    P24724365345960.72
    Ⅱ区P34684355546190.78
    P44709356446410.79
    下载: 导出CSV
  • [1] 李洪涛, 杨兴国, 卢文波, 等. 基于等效峰值能量的建筑物爆破振动安全评价探讨[J]. 岩土工程学报, 2011, 33(5): 821-825. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105029.htm

    LI Hong-tao, YANG Xing-guo, LU Wen-bo, et al. Safety assessment for structures under blasting vibration based on equivalent peak energy[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 821-825. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105029.htm

    [2] 胡英国, 吴新霞, 赵根, 等. 严寒条件下岩体开挖爆破振动安全控制特性研究[J]. 岩土工程学报, 2017, 39(11): 2139-2146. doi: 10.11779/CJGE201711023

    HU Ying-guo, WU Xin-xia, ZHAO Gen, et al. Investigation of safety control for rock blasting excavation under cold condition[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2139-2146. (in Chinese) doi: 10.11779/CJGE201711023

    [3] 杨招伟, 卢文波, 高启栋, 等. 基于地表实测爆破振动的岩体动力学参数快速反演方法[J]. 岩土工程学报, 2019, 41(4): 775-781. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904028.htm

    YANG Zhao-wei, LU Wen-bo, GAO Qi-dong, et al. Inversion of dynamic parameters of rock mass based on field blasting vibration[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 775-781. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904028.htm

    [4]

    KNOCK C, DAVIES N. Blast waves from cylindrical charges[J]. Shock Waves, 2013, 23(4): 337-343. doi: 10.1007/s00193-013-0438-7

    [5]

    LONG Y, ZHONG MS, XIE QM, et al. Influence of initiation point position on fragmentation by blasting in iron ore[J]. Fragblast, 2012, 10: 111-116.

    [6]

    ONEDERRA I A, FURTNEY J K, SELLERS E, et al. Modelling blast induced damage from a fully coupled explosive charge[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 58: 73-84.

    [7]

    TRIVIÑO L F, MOHANTY B, MILKEREIT B. Seismic waveforms from explosive sources located in boreholes and initiated in different directions[J]. Journal of Applied Geophysics, 2012, 87(12): 81-93.

    [8] 张宝平, 张庆明, 黄风雷. 爆轰物理学[M]. 北京: 兵器工业出版社, 2001.

    ZHANG Bao-ping, ZHANG Qing-ming, HUANG Feng-lei. Detonation Physics[M]. Beijing: Weapon Industry Press, 2001. (in Chinese)

    [9] 龚敏, 黎剑华. 延长药包不同位置起爆时的应力场[J]. 北京科技大学学报, 2002, 24(3): 248-253. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD200203005.htm

    GONG Min, LI Jian-hua. A research on stress field of column and strip-shaped charge in different detonated points[J]. Journal of University of Science and Technology Beijing. 2002, 24(3): 248-253. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD200203005.htm

    [10] 刘亮, 郑炳旭, 陈明, 等. 起爆方式对台阶爆破根底影响的数值模拟分析[J]. 爆破, 2015, 32(3): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO201503009.htm

    LIU Liang, ZHENG Bing-xu, CHEN Ming, et al. Numerical simulation analysis of influence of different detonation methods on bedrock in bench blasting[J]. Blasting, 2015, 32(3): 49-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO201503009.htm

    [11] 冷振东, 卢文波, 范勇, 等. 侧向起爆条件下的爆炸能量分布及其对破岩效果的影响[J]. 爆炸与冲击, 2017, 37(4): 661-669. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201704011.htm

    LENG Zhen-dong, LU Wen-bo, FAN Yong, et al. Explosion energy distribution by side initiation and its effects on rock fragmentation[J]. Explosion and Shock Waves, 2017, 37(4): 661-669. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201704011.htm

    [12] 高启栋, 卢文波, 冷振东, 等. 隧洞开挖过程中掏槽孔起爆位置的优选[J]. 振动与冲击, 2018, 37(9): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201809003.htm

    GAO Qi-dong, LU Wen-bo, LENG Zhen-dong, et al. Optimization of cut-hole detonator position in tunnel excavation[J]. Journal of Vibration and Control, 2018, 37(9): 16-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201809003.htm

    [13] 张志呈, 李显寅. 柱状装药结构起爆药位置的设置对提高爆破质量的重要性[J]. 四川冶金, 2009, 31(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SCYJ200905000.htm

    ZHANG Zhi-cheng, LI xian-yin. The importance of improving blasting quality by setting the position of primary explosives in the structure of column charge[J]. Sichuan Metallurgy, 2009, 31(5): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCYJ200905000.htm

    [14] 李显寅. 起爆药包位置影响爆破效果的研究进展[J]. 化工矿物与加工, 2009, 38(7): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ200907018.htm

    LI Xian-yin. Research progresses on influence of initiation charge location for blasting effect[J]. Industrial Minerals & Processing, 2009, 38(7): 38-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ200907018.htm

    [15]

    LIU Ke-wei, LI Xiao-han, LI Xi-bing. et al. Characteristics and mechanisms of strain waves generated in rock by cylindrical explosive charges[J]. Journal of Central South University, 2016, 23(11): 2951-2957.

    [16]

    LI H, XIANG X, LI J, et al. Rock damage control in bedrock blasting excavation for a nuclear power plant[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48(2): 210-218.

    [17] 胡英国, 卢文波, 陈明, 等. 岩石爆破损伤模型的比选与改进[J]. 岩土力学, 2012, 33(11): 3278-3284. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201211013.htm

    HU Ying-guo, LU Wen-bo, CHEN Ming, et al. Comparison and improvement of blasting damage models for rock[J]. Rock and Soil Mechanics, 2012, 33(11): 3278-3284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201211013.htm

    [18] 胡浩然, 卢文波, 席浩, 等. 聚-消能复合垫层保护下的水平建基面开挖方法研究[J]. 岩石力学与工程学报, 2016(A02): 4129-4138. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2074.htm

    HU Hao-ran, LU Wen-bo, XI Hao, et al. Horizontal foundation surface excavation method under the protection of energy shaped and dissipation composite cushion[J]. Chinese Journal of Rock Mechanics and Engineering, 2016(A02): 4129-4138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2074.htm

    [19] 卢文波, 胡浩然, 严鹏, 等. 垂直孔复合消能爆破技术在白鹤滩水电站建基面开挖保护中的应用[C]//15th National Conference on Rock Dynamics, Wuhan, 2017.

    LU Wen-bo, HU Hao-ran, YAN Peng, et al. Application of vertical borehole energy-relief blasting technique in the excavation and protection of Bai-he-tan foundation[C]//15th National Conference on Rock Dynamics, 2017, Wuhan. (in Chinese)

    [20] 严鹏, 邹玉君, 卢文波, 等. 基于爆破振动监测的岩石边坡开挖损伤区预测[J]. 岩石力学与工程学报, 2016, 35(3): 538-548. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603011.htm

    YAN Peng, ZOU Yu-jun, LU Wen-bo, et al. Predicting the damage zone of rock slopes under blasting excavation based on vibration monitoring[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 538-548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603011.htm

    [21] 水工建筑物岩石基础开挖工程施工技术规范:SL47—94[S]. 1994.

    Technical Specification for Construction of Rock Foundation Excavation of Hydraulic Structures: SL47—94[S]. 1994. (in Chinese)

  • 期刊类型引用(8)

    1. 高子涛,马泽瑞,汪书敏,王志亮,尚晓梓,毕云飞,华正宇,缪逢晨. 花岗岩中应力波传播试验与数值模拟分析. 矿业工程研究. 2024(03): 29-35 . 百度学术
    2. 甘德清,袁涛,薛振林,刘志义,孙海宽. 微观尺度下磁铁矿石动态破碎特性与能耗. 科学技术与工程. 2024(32): 13756-13765 . 百度学术
    3. 王春,李心茹,胡慢谷,李佳,张红成,张翼飞. 热循环作用后圆环状花岗岩样静动态破裂特征及破坏判据. 岩石力学与工程学报. 2023(S2): 3861-3875 . 百度学术
    4. 李睿,刘磊,张志华,王远. 基于HJC模型高温后大理岩SHPB实验数值模拟研究. 工程爆破. 2022(01): 37-44 . 百度学术
    5. 刘雅甜,方士正,何松林,李剑楠,刘朕. 动载作用下铁矿石能量耗散规律及破坏特征试验研究. 金属矿山. 2022(06): 46-54 . 百度学术
    6. 李艳,程禹翰,翟越,魏盛宇,杨宇冰,赵瑞峰,梁文彪. 高温后花岗岩微观结构演化特性与动态力学性能研究. 岩土力学. 2022(12): 3316-3326 . 百度学术
    7. 杨敏,杨磊,李玮枢,梅洁,盛祥超,李景龙. 循环升温-水冷作用下花岗岩的力学特征与破坏模式. 科学技术与工程. 2021(32): 13828-13836 . 百度学术
    8. 黄银钉,张振亚. 花岗岩动态压缩力学特性研究. 地下空间与工程学报. 2019(04): 1133-1137+1179 . 百度学术

    其他类型引用(18)

图(17)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 26
出版历程
  • 收稿日期:  2020-01-07
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-10-31

目录

    /

    返回文章
    返回