• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于辛体系的筋箍碎石桩受力变形分析

张玲, 张旭波, 徐泽宇, 欧强

张玲, 张旭波, 徐泽宇, 欧强. 基于辛体系的筋箍碎石桩受力变形分析[J]. 岩土工程学报, 2020, 42(11): 2040-2049. DOI: 10.11779/CJGE202011009
引用本文: 张玲, 张旭波, 徐泽宇, 欧强. 基于辛体系的筋箍碎石桩受力变形分析[J]. 岩土工程学报, 2020, 42(11): 2040-2049. DOI: 10.11779/CJGE202011009
ZHANG Ling, ZHANG Xu-bo, XU Ze-yu, OU Qiang. Stress and deformation analysis of geosynthetic-encased stone columns based on symplectic system[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2040-2049. DOI: 10.11779/CJGE202011009
Citation: ZHANG Ling, ZHANG Xu-bo, XU Ze-yu, OU Qiang. Stress and deformation analysis of geosynthetic-encased stone columns based on symplectic system[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2040-2049. DOI: 10.11779/CJGE202011009

基于辛体系的筋箍碎石桩受力变形分析  English Version

基金项目: 

国家自然科学基金项目 51678231

国家自然科学基金项目 52078205

国家自然科学基金青年项目 51978255

湖南省自然科学基金项目 2020JJ3013

详细信息
    作者简介:

    张玲(1982—),女,浙江临海人,副教授,博士生导师,主要从事桩基础和特殊土地基处理等研究。E-mail:zhanglhd@163.com

  • 中图分类号: TU43

Stress and deformation analysis of geosynthetic-encased stone columns based on symplectic system

  • 摘要: 因土工格栅套筒的环箍效应,筋箍碎石桩的受力变形机理较普通碎石桩更为复杂。将筋箍碎石桩单桩的受力变形视为空间轴对称问题,基于辛体系理论构建了可考虑桩体横截面剪应力的辛对偶方程,并对方程进行变量分离,再结合边界条件得到了筋箍碎石桩沉降及径向变形的辛体系解答。通过算例分析验证了方法的合理性与可行性。进一步的参数分析表明:筋箍碎石桩的沉降及鼓胀变形随筋材抗拉刚度的增大而减小;随桩土应力比的增大而增大,但增长率逐渐减小;随加筋深度的增大而减小,但超过最优加筋深度时不再变化;而最优加筋深度则随荷载的增大、桩间距的增大及侧压力系数的减小而相应增大。
    Abstract: Due to the hoop effect of geogrids, the stress and deformation mechanism of geosynthetic-encased stone columns (GESCs) is more complex than that of the ordinary stone columns. In this study, the stress and deformation of a single GESC is regarded as a space axisymmetric problem. Based on the symplectic system theory, a symplectic dual equation considering the shear stress of the cross section of the column is formulated, the variables of the equation are separated, and the distribution functions for the settlement and radial deformation of GESCs are finally obtained according to the boundary conditions. The rationality and feasibility of this method are verified by the practical example, and the parameter analysis shows that the settlement and bulging of GESCs decrease with the increase of encasement stiffness. They increase with the increase of pile-soil stress ratio, but the growth rate decreases gradually. They decrease with the increase of encasement depth, but no longer change when they exceed the optimal encasement depth. The optimal encasement depth increases with the increase of load and pile spacing, and with the decrease of lateral pressure coefficient.
  • 江苏各市广泛分布的软弱土,具有高含水率、高压缩性、低渗透性、低抗剪强度、高含盐量及显著的结构性与流变性等特点,对其处理较为复杂。针对此类软黏土,电渗法有较好的处理效果,但是电渗法存在耗能过高、加固不均匀的问题[1]。为缓解城市用地紧张,根据已有研究成果,提高电渗加固软土性能主要有两种研究思路:①通过改变电极材料[2-3]、电极布置形式[4-5]和通电方式[6]等初始条件;②将电渗与其它方法联合使用,常见的有电渗-堆载[7]、电渗-真空预压[8]、化学电渗[9]等。本研究在第二种思路的基础上,将电渗法与堆载预压和化学灌浆结合,以期使电渗法更加经济可行。为探讨该法的可行性,本文开展电渗-堆载-化学灌浆联合法(Electro-Osmosis-Surcharge Preloading-Chemical Grouting,简称EO-SC-CG)和化学电渗(Electro-Omosis-Chemical Grouting,简称EO-CG)的对比试验,从排水量、通电电流、有效电势、十字板剪切强度、含水率等方面证实电渗-堆载-化学灌浆联合法的有效性。

    室内模型试验所用土样为取自江苏盐城地区的滩涂软土,通过室内土工试验对软土的基本物理性质进行测试。试验前,将原状土烘干后击碎,然后倒入搅拌桶中充分搅拌均匀后静置24 h,再对软土进行重塑,使试验用滩涂软土的含水率达到40%,最终得到重塑土的基本物理性质指标如表1所示。

    表  1  重塑土的基本指标
    Table  1.  Basic parameters of remolded soil
    含水率 w/%液限wL/%塑限wP/%Gs不排水抗剪强度cu/kPa
    4030.813.92.71≈0
    下载: 导出CSV 
    | 显示表格

    室内模型试验(EO-SC-CG与EO-CG)采用自制试验装置,主要由土样室和排水室两部分组成,其中排水室内的排水孔为直径25 mm的圆形孔洞,如图1所示。EO-CG装置模型与前者相同,区别仅在于EO-CG方法没有施加充当均布荷载的上覆砂。模型箱采用亚克力板材制成,模型箱尺寸为400 mm×300 mm×200 mm。阳极采用尺寸为350 mm×150 mm×3 mm的铁板;阴极所用电极尺寸与阳极相同,在电极板上均匀打下48个孔径为4 mm的小孔。注浆管采用内径9 mm,外径11 mm的PVC管,管壁均匀设置小孔,并将管底封闭,有利于注入的化学浆液向土体扩散,同时能够有效控制化学浆液过快的向土体底部沉积。阴极注浆材料选用Na2SiO3溶液,阳极注浆材料选用CaCl2溶液[10]。电导线采用多股铜芯电导线,导体材质为无氧铜,绝缘材料为聚氯乙烯。装置图1的上覆砂均匀铺在土样层上,既起到堆载的作用,又可以消除电渗模型几何边界引起的尺寸效应[11]

    图  1  电渗-堆载-化学灌浆试验装置图
    Figure  1.  Schematic configuration of electro-osmotic-surcharge preloading-chemical grouting

    本文主要研究EO-SC-CG与EO-CG两种加固方法对盐城地区滩涂软土的加固效果,试验分为两组,基本参数如表2所示。试验的初始含水率为40%,电势梯度选取1 V/cm[12],电源电压均为23 V。

    表  2  试验基本参数
    Table  2.  Basic parameters of experiments
    组别试验时间/h堆载大小/kPa注浆材料与注浆量
    EO-SC-CG481.5CaCl2 (45mL)+Na2SiO3(45mL)
    EO-CG480CaCl2(45mL)+Na2SiO3(45mL)
    下载: 导出CSV 
    | 显示表格

    试验开始前,将阳极电极放置在远离排水室一侧,阴极电极放置在靠近排水室一侧;两侧注浆管均放置在距电极3 cm处;分别放置两根测针在电极与注浆管中间。因为EO-SC-CG涉及施加堆载时间,故先开展EO-CG试验。两组试验开始通电后实时观测记录通电电流,电势与排水量。待排水量不再增加时,关闭电源,分上、中、下三层按距离阳极0,5,10,15,20 cm,取土样测量十字板剪切强度与含水率,土样测试点位置如图2所示。过程中两组试验注浆时间均定在电流大幅降低且保持稳定的时刻。依据袁国辉[13]进行的电渗-堆载联合试验,当电渗固结度达到40%时为最佳堆载时间。故EO-SC-CG可根据EO-CG得到最终沉降量S,利用平均固结度表达式:Uavg=St / S,得到固结度达到40%时的沉降量,施加堆载。

    图  2  检测布置图
    Figure  2.  Layout of monitoring and measuring instruments

    排水量与排水速率随时间的变化曲线如图3所示。因为施加堆载的作用,EO-SC-CG的排水量最终高于EO-CG。两组试验的排水量分别为1360,1170 mL,EO-SC- CG的排水量相对EO-CG增加16.2%。由图3可知,排水速率随时间呈现出逐渐减小的趋势,并且在化学注浆后排水速率均会先达到一个峰值点,之后逐步下降。EO-CG和EO-SC-CG分别在试验进行至10 h和8 h时注浆,注浆后排水速率1 h内增幅分别约为28.9%和14.3%,达到峰值时增幅分别约为34.1%和37.5%。因堆载预压的加持作用,EO-SC-CG的峰值增幅稍大。结合微观观测,随着电渗的进行,注入的浆液在直流电作用下生成CaSiO3并填充土体孔隙,导致土体的渗透性降低,进而影响土体的排水速率。试验后期,EO-SC-CG的排水速率高于EO-CG,说明EO-SC-CG因施加堆载预压,在一定程度上能够缓解土体后期排水效果较差的趋势。

    图  3  排水量与排水速率随时间的变化曲线
    Figure  3.  Curves of water discharge, water discharge rate and time

    有效电势随时间的变化曲线如图4所示。由图4可知,两组试验的有效电势均呈现出先增加后减小的趋势,且其变化速率在注浆后都呈现出加快的趋势,说明注浆后,土中可移动的离子浓度增加,促进了土体内的离子移动速率,导致电阻减小,有效电势增加。EO-SC-CG在11 h施加堆载时,其有效电势较前一时刻没有明显变化,且达到第一次峰值的时间与EO-CG基本一致,说明施加堆载对有效电势的提升有限。两组试验的有效电势在第一次峰值后均呈现下降趋势,但是EO-SC-CG的下降速率较缓。因为阳极不断发生电化学反应,生成的胶结物附在土体表面,导致电极与土体接触界面上电阻增大,有效电势减小;加之阳极附近土中的水不断向阴极移动,致使阳极区土体失水产生裂缝,接触电阻增大。而EO-SC-CG的有效电势下降速率较缓是因为堆载作用能够有效抑制裂缝的产生,使得电阻增大缓慢。比较两组试验后期的曲线可知,EO-SC-CG的有效电势相对较大,进一步说明堆载作用在一定程度上能够抑制裂缝产生,减缓有效电势的减少,使有效电势总体上变化较为均匀。

    图  4  有效电势随时间的变化曲线
    Figure  4.  Curves of effective potential and time

    将所得结果在同一距离不同深度的强度以及含水率取均值,得到抗剪强度与最终含水率在电极间的分布如图5所示。由图5可知,抗剪强度随距阳极的距离增大而减小,阳极附近土体的抗剪强度最大。土中的水在电渗作用下,自阳极移动至阴极,阳极附近因为铁质电极的腐蚀,生成Fe2+、Fe3+的氧化物与氢氧化物等,一定程度上能够胶结土体。同时因为注浆作用,阳极附近发生化学反应生成Ca(OH)2、CSH和CAH等填充土体孔隙,使阳极附近的土体强度得到提升。两组试验中,EO-SC-CG的平均抗剪强度相对EO-CG提高约14%,故堆载对土体抗剪强度的提升具有一定作用。因为堆载产生的自重作用对土体进行了压密,导致土体抗剪强度的提升。由于电渗作用,孔隙水不断自阳极流向阴极,含水率的分布呈现出从阳极到阴极逐步增大的规律。相比EO-CG,EO-SC-CG处理后的土体含水率较低,减少约17.8%。将同一深度不同距离的抗剪强度与含水率取均值,得到抗剪强度与最终含水率随深度分布如图6所示。由图6可知,土体的抗剪强度沿深度逐渐降低,呈现出表层>中层>底层的规律,EO-SC-CG得到的平均强度相比EO-CG提高了14%。相比EO-CG,EO-SC-CG试验处理后同一深度的土体含水率较低,减少约17.6%。

    图  5  抗剪强度与最终含水率在电极之间的分布图
    Figure  5.  Distribution of shear strength and final moisture content between electrodes
    图  6  抗剪强度与最终含水率随深度分布图
    Figure  6.  Distribution of shear strength and final moisture content with depth

    通过电渗-堆载-化学灌浆与电渗-化学灌浆两组室内试验,分析试验过程中排水量、排水速率、有效电势、十字板剪切强度与含水率等,得以下结论:

    (1)在EO-CG的基础上增加堆载对电渗排水有一定的促进作用,相对EO-CG,EO-SC-CG的排水速率增加25.8%,平均抗剪强度提高14%。同时,EO-SC-CG的有效排水时间更长,堆载作用在一定程度上能减缓土体后期排水速率降低的趋势。

    (2)堆载一定程度上抑制裂缝产生,阻止有效电势减少,进而使有效电势总体上变化较均匀。

    (3)EO-SC-CG不仅能促进土体排出水分,提高土体的密实度与强度,同时也能改善电极与土的接触性,实现电渗、化学灌浆和堆载预压的共同加固。

  • 图  1   单桩加固区计算模型

    Figure  1.   Computational model for a single GESC in reinforcement area

    图  2   碎石桩p0-s曲线

    Figure  2.   p0-s curves of stone columns

    图  3   碎石桩径向变形与深度关系曲线

    Figure  3.   Curves of relationship between radial deformation and depth of stone columns

    图  4   筋箍碎石桩pc-s曲线

    Figure  4.   pc-s curves of GESC

    图  5   筋箍碎石桩径向变形与深度关系曲线

    Figure  5.   Curves of relationship between radial deformation and depth of GESC

    图  6   筋材抗拉刚度与筋箍碎石桩沉降关系曲线

    Figure  6.   Curves of relationship between encasement stiffness and settlement of GESC

    图  7   不同筋材抗拉刚度下筋箍碎石桩径向变形曲线

    Figure  7.   Curves of radial deformation of GESC under different encasement stiffnesses

    图  8   不同p0下筋箍碎石桩加筋深度与沉降关系曲线

    Figure  8.   Curves of relationship between encasement depth and settlement of GESC under differentp0

    图  9   不同加筋深度下筋箍碎石桩径向变形曲线

    Figure  9.   Curves of radial deformation of GESC under different encasement depths

    图  10   不同p0下筋箍碎石桩径向变形与加筋深度关系曲线

    Figure  10.   Curves of relationship between radial deformation and encasement depth of GESC under differentp0

    图  11   不同sd下筋箍碎石桩加筋深度与沉降关系曲线

    Figure  11.   Curves of relationship between encasement depth and settlement of GESC under differentsd

    图  12   不同sd下筋箍碎石桩径向变形与加筋深度关系曲线

    Figure  12.   Curves of relationship between radial deformation and encasement depth of GESC under differentsd

    图  13   不同K0下筋箍碎石桩加筋深度与沉降关系曲线

    Figure  13.   Curves of relationship between encasement depth and settlement of GESC under differentK0

    图  14   不同K0下筋箍碎石桩径向变形与加筋深度关系曲线

    Figure  14.   Curves of relationship between radial deformation and encasement depth of GESC under differentK0

    图  15   筋箍碎石桩桩土应力比与沉降关系曲线

    Figure  15.   Curves of relationship between pile-soil stress ratio and settlement of GESC

    图  16   不同桩土应力比下筋箍碎石桩径向变形曲线

    Figure  16.   Curves of radial deformation of GESC under different pile-soil stress ratios

  • [1]

    VAN IMPE W F. Soil improvement techniques and their evolution[J]. Animal Science Papers. Sd Reports, DOI: http://dx.doi.org/1989.

    [2] 赵明华, 何玮茜, 衡帅, 等. 基于圆孔扩张理论的筋箍碎石桩承载力计算方法研究[J]. 岩土工程学报, 2017, 39(10): 1785-1792. doi: 10.11779/CJGE201710005

    ZHAO Ming-hua, HE Wei-xi, HENG Shuai, et al. Calculation method of geogrid-encased stone columns' bearing capacity based on cavity expansion theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1785-1792. (in Chinese) doi: 10.11779/CJGE201710005

    [3]

    RAITHEL M, KEMPFERT H G. Calculation models for dam foundations with geosynthetic coated sand columns[C]//Geotechnical and Geological Engineering, 2000, Lisbon.

    [4]

    DUAN Y Y, ZHANG Y P, CHAN D, et al. Theoretical elastoplastic analysis for foundations with geosynthetic-encased columns[J]. Journal of Zhejiang University SCIENCE A, 2012, 13(7): 506-518. doi: 10.1631/jzus.A1100334

    [5]

    ZHANG L, ZHAO M. Deformation analysis of geotextile-encased stone columns[J]. International Journal of Geomechanics, 2015, 15(3): 1-10.

    [6]

    KONG G Q, ZHOU Y, LIU H L. Nonlinear model analysis of radial bulging deformation of geosynthetic-encased stone columns[J]. International Journal of Geomechanics, 2018, 18(10): 1-12.

    [7]

    PULKO B, MAJES B, LOGAR J. Geosynthetic-encased stone columns: analytical calculation model[J]. Geotextiles and Geomembranes, 2011, 29(1): 29-39. doi: 10.1016/j.geotexmem.2010.06.005

    [8]

    ZHOU Y, KONG G Q. Deformation analysis of a geosynthetic-encased stone column and surrounding soil using cavity-expansion model[J]. International Journal of Geomechanics, 2019, 19(5): 1-12.

    [9] 赵明华, 牛浩懿, 刘猛, 等. 柔性基础下碎石桩复合地基桩土应力比及沉降计算[J]. 岩土工程学报, 2017, 39(9): 1549-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201709002.htm

    ZHAO Ming-hua, NIU Hao-yi, LIU Meng, et al. Pile-soil stress ratio and settlement of composite ground with gravel piles in flexible foundation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1549-1556. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201709002.htm

    [10] 钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.

    ZHONG Wan-xie. A New Systematic Methodology for Theory of Elasticity[M]. Dalian: Dalian University of Technology Press, 1995. (in Chinese)

    [11] 徐芝纶. 弹性力学(上册)[M]. 北京: 高等教育出版社, 2006.

    XU Zhi-lun. Elastic Mechanics (I)[M]. Beijing: Higher Education Press, 2006. (in Chinese)

    [12]

    ZHANG W X, CUI W H, XAIO Z R, et al. The quasi-static analysis for the viscoelastic hollow circular cylinder using the symplectic system method[J]. International Journal of Engineering Science, 2010, 48: 727-741. doi: 10.1016/j.ijengsci.2010.03.003

    [13] 弗洛林 В А. 土力学原理(第一卷)[M]. 徐志英,译.北京: 中国建筑工业出版社, 1973: 87-88.

    ФЛОРИНB A. Fundamentals of Soil Mechanics (First volume)[M]. XU Zhi-ying, trans. Beijing: China Architecture and Building Press, 1973: 87-88. (in Chinese)

    [14]

    MALARVIZHI , ILAMPARUTHI . Comparative study on the behavior of encased stone column and conventional stone column[J]. Soils and Foundations, 2007, 47(5): 873-885.

    [15]

    YOO C, LEE D. Performance of geogrid-encased stone columns in soft ground: Full-scale load tests[J]. Geosynthetics International, 2012, 19(6): 480-490. doi: 10.1680/gein.12.00033

    [16] 龚晓南. 复合地基设计和施工指南[M]. 北京: 人民交通出版社, 2003: 109-110.

    GONG Xiao-nan. Composite Foundation Design and Construction Guideline[M]. Beijing: People's Transportation Press, 2003: 109-110. (in Chinese)

    [17]

    WU C S, HONG Y S. The behavior of a laminated reinforced granular column[J]. Geotextiles and Geomembranes, 2008, 26(4): 302-316. doi: 10.1016/j.geotexmem.2007.12.003

    [18] 赵明华. 土力学与基础工程[M]. 第4版. 武汉: 武汉理工大学出版社, 2014.

    ZHAO Ming-hua. Soil Mechanics and Foundation Engineering[M]. 4th ed. Wuhan: Wuhan University of Technology Press, 2014. (in Chinese)

    [19]

    ZHANG L, ZHAO M, SHI C, et al. Settlement calculation of composite foundation reinforced with stone columns[J]. International Journal of Geomechanics, 2012, 13(3): 248-256.

    [20] 《工程地质手册》编委会. 工程地质手册[M]. 第5版. 北京: 中国建筑工业出版社, 2018: 176-177.

    Editorial board of Geological Engineering Handbook. Geological Engineering Handbook[M]. 5th ed. Beijing: China Architecture and Building Press, 2018: 176-177. (in Chinese)

  • 期刊类型引用(7)

    1. 李俊毅. 电渗法加固土体技术的探究与展望. 岩土工程技术. 2024(02): 238-245 . 百度学术
    2. 王炳辉,栾佶,张雷,金海晖,张文博. 电渗热固结处理顶管废弃泥浆的减量化研究. 地下空间与工程学报. 2024(02): 507-517 . 百度学术
    3. 王华杰. 电渗试验中土体电阻变化规律探究. 科技创新与应用. 2024(34): 73-76 . 百度学术
    4. 王炳辉,李贵豪,张雷,金海晖,吴涛,贾仲泽,金丹丹. 不同掺加材料对软土电渗加固效果的影响. 自然灾害学报. 2024(06): 86-97 . 百度学术
    5. 桂书润,王龙嘉,班子越,赵飞燕,徐欣. 电渗联合堆载预压及化学法加速淤筑土固结的试验研究. 河南科技. 2023(05): 86-90 . 百度学术
    6. 陈海鹏. 引水隧洞混凝土裂缝化学灌浆加固技术研究. 陕西水利. 2023(10): 154-156 . 百度学术
    7. 李丽华,杨俊杰,徐维生,宋杨,曹毓. 电渗法联合化学固化法改良淤泥试验. 中国科技论文. 2022(12): 1340-1345 . 百度学术

    其他类型引用(3)

图(16)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 10
出版历程
  • 收稿日期:  2020-03-23
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-10-31

目录

/

返回文章
返回