• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

盾构在泡沫混凝土中的接收及现场实测分析

刘孟波, 廖少明, 陈立生, 赵国强, 徐伟忠

刘孟波, 廖少明, 陈立生, 赵国强, 徐伟忠. 盾构在泡沫混凝土中的接收及现场实测分析[J]. 岩土工程学报, 2020, 42(11): 2006-2014. DOI: 10.11779/CJGE202011005
引用本文: 刘孟波, 廖少明, 陈立生, 赵国强, 徐伟忠. 盾构在泡沫混凝土中的接收及现场实测分析[J]. 岩土工程学报, 2020, 42(11): 2006-2014. DOI: 10.11779/CJGE202011005
LIU Meng-bo, LIAO Shao-ming, CHEN Li-sheng, ZHAO Guo-qiang, XU Wei-zhong. In-situ measurements of shield machine receiving in foamed concrete[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2006-2014. DOI: 10.11779/CJGE202011005
Citation: LIU Meng-bo, LIAO Shao-ming, CHEN Li-sheng, ZHAO Guo-qiang, XU Wei-zhong. In-situ measurements of shield machine receiving in foamed concrete[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2006-2014. DOI: 10.11779/CJGE202011005

盾构在泡沫混凝土中的接收及现场实测分析  English Version

基金项目: 

上海市科委“科技创新行动计划”项目 18DZ1205404

上海市科委“科技创新行动计划”项目 19511100802

上海市住建委项目 沪住建管科2019-009-001

中建股份资助项目 CSCEC-2017-Z-25

详细信息
    作者简介:

    刘孟波(1990—),博士研究生,主要从事软土盾构法隧道设计优化与施工控制研究。E-mail:mengbo_liu@tongji.edu.cn

    通讯作者:

    廖少明, E-mail:engcent@tongji.edu.cn

  • 中图分类号: TU43

In-situ measurements of shield machine receiving in foamed concrete

  • 摘要: 泡沫混凝土盾构接收工法是利用泡沫混凝土为盾构接收掘进提供平衡条件,同时起到稳定洞口土体和防止突涌水等作用,其中盾构掘进参数的合理选取是该工法的关键点。以上海地铁14号线云山路站泡沫混凝土盾构接收为背景,通过现场测试,研究了盾构在泡沫混凝土中的关键掘进参数、端墙和侧墙的压力变化、泡沫混凝土深层位移变化规律及其相关性。分析发现:①盾构从加固体进入泡沫混凝土至最终顶进到位,推力、扭矩和土仓压力的量值和波动呈现先下降再上升的规律;②盾构推进在泡沫混凝土端墙产生的压力增量明显大于侧墙,侧墙压力增量为20~30 kPa,端墙压力最大增量达120 kPa,为初始值的6~7倍;③端墙上压力变化与盾构掘进状态呈现高度相关性,随盾构开停推进循环,墙上压力呈“锯齿状”累积上升;④随着切口接近端墙,单位推进距离产生的端墙压力增量变大,且盾壳全部进入泡沫混凝土箱体时,端墙压力发生突增;⑤盾构前方泡沫混凝土的侧向位移沿盾构推进方向最大约10 mm,呈现中间大、拱顶和拱底小的“凸分布”;端墙附加压力呈“梯形”分布,拱顶压力增量极小,中部增大约60 kPa,底部增大约120 kPa。实测分析成果可为泡沫混凝盾构接收工法的井壁设计、材料优化以及盾构参数的控制提供重要技术参考,工程的成功实施也为该工法的进一步推广应用打下了基础。
    Abstract: The foamed concrete can be used in the shield machine receiving to stabilize the ground near the soft eye and to prevent water inrush. One of the critical points of this method is to control the shield tunneling parameters. Based on the shield machine receiving in the foamed concrete at Yunshan Road Station of Shanghai metro line No. 14, the critical parameters, change of pressures on end and side walls, deep displacements of the foamed concrete and their correlation during the tunneling process in the foamed concrete are studied through in-situ measurements. According to the analysis, the main findings are as follows: (1) The magnitude and fluctuation of thrust, torque and pressure in the earth cabin all experience a "down then up" process. (2) When the shield advances in the foamed concrete, the pressure increment on the end wall is more significant than that on the side wall. The change of pressure on the side wall is 20~30 kPa, while the maximum pressure increment on the end wall is up to 120 kPa, which is 6~7 times the initial value. (3) The pressure on the end wall accumulates in a "zigzag" pattern with the starting and stopping of the advance cycle of shield construction. (4) As the cutter head is closer to the end wall, the pressure increment generated by the unit advance distance increases accordingly. (5) The foamed concrete in front of the shield presents a "convex distribution" along the advancing direction. The pressure increment on the vault of the end wall is the minimum, with an increase of about 60 kPa in the middle and about 120 kPa in the bottom. These results can provide an essential reference for shaft design, material optimization and parameter control. The successful implementation of this project also lays a foundation for the further popularization and application of the proposed method.
  • 图  1   泡沫混凝土现场制备及表观特征

    Figure  1.   Manufacture and apparent features of foamed concrete

    图  2   泡沫混凝土在盾构法隧道工程的应用

    Figure  2.   Application of foamed concrete in tunnel projects

    图  3   端头加固及地层分布情况

    Figure  3.   Ground reinforcement and strata

    图  4   泡沫混凝土浇筑现场图片

    Figure  4.   Pictures of foamed concrete pouring

    图  5   测点布置平面图

    Figure  5.   Plane layout of gauging points

    图  6   端墙测点布置平面图

    Figure  6.   Layout of gauging points on end wall

    图  7   侧墙测点布置平面图

    Figure  7.   Layout of gauging points on side wall

    图  8   传感器及采集仪现场安装

    Figure  8.   Installation of sensors and acquisition apparatus

    图  9   盾构掘进参数统计

    Figure  9.   Statistic of shield parameters in foamed concrete

    图  10   墙上压力与切口到端墙距离关系

    Figure  10.   Relationship between pressure and advancing length

    图  11   墙上压力时间历程曲线

    Figure  11.   Time histories of pressure on walls

    图  12   端墙底部压力(TY4-3)时间历程曲线

    Figure  12.   Time histories of pressure on bottom wall (TY4-3)

    图  13   单环推进距离与端墙下部压力(TY4-3)统计关系

    Figure  13.   Statistical relationship between advancing distance and pressure on bottom wall (TY4-3)

    图  14   墙体附近泡沫混凝土侧移时间历程曲线

    Figure  14.   Time histories of lateral displacement of foamed concrete

    图  15   端墙上压力分布及泡沫混凝土变形分析

    Figure  15.   Distribution of pressure and deformations of foamed concrete on end wall

    表  1   泡沫混凝土与普通混凝土的性能比较[13]

    Table  1   Comparison between foamed concrete and ordinary concrete

    性能指标干密度/(kg·m-3)抗压强度/MPa弯曲刚度/MPa弹性模量/GPa干燥收缩新拌流动性/mm
    泡沫混凝土300~18000.5~100.1~0.70.3~1.21500~3500>200
    普通混凝土2200~240030~803.0~8.020~30600~900>180
    下载: 导出CSV

    表  2   进洞段主要穿越地层及关键参数

    Table  2   Strata near shaft and key parameters

    层号土层名称重度/(kN·m-3)黏聚力/kPa内摩擦角/(°)地基承载力特征值/kPa
    灰色淤泥质黏土16.71012.560
    1-1灰色黏土17.51312.095
    1-2灰色粉质黏土18.31719.5105
    暗绿—草黄色粉质黏土18.24121.5130
    下载: 导出CSV
  • [1] 李东海. 盾构直削始发接收支护结构变形机理与控制技术研究[D]. 北京: 北京交通大学, 2019.

    LI Dong-hai, Study on Retaining Structure Deformation Mechanism and Controlling Technology of Shield Driving at Start and Arrival by Direct Cutting[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)

    [2] 安宏斌, 怀平生, 白晓岭, 等. 无端头加固条件下土压平衡盾构水下接收施工技术[J]. 隧道建设(中英文), 2019, 39(10): 1697-1703. doi: 10.3973/j.issn.2096-4498.2019.10.017

    AN Hong-bin, HUAI Ping-sheng, BAI Xiao-ling, et al. Construction technology of underwater receiving of EPB shield under condition of reinforcement[J]. Tunnel Construction, 2019, 39(10): 1697-1703. (in Chinese) doi: 10.3973/j.issn.2096-4498.2019.10.017

    [3] 李罡, 黄宏伟. 超大直径盾构水中进洞风险分析[J]. 地下空间与工程学报, 2009, 5(增刊): 1422-1426. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2009S1030.htm

    LI Gang, HUANG Hong-wei. Risk analysis on arriving into shaft of super large diameter shield machine under water[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(S0): 1422-1426. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2009S1030.htm

    [4] 廖少明, 门燕青, 赵国强, 等. 盾构接收中钢套筒的受力变形特性与实测分析[J]. 岩土工程学报, 2016, 38(11): 1948-1956. doi: 10.11779/CJGE201611003

    LIAO Shao-ming, MEN Yan-qing, ZHAO Guo-qiang, et al. Mechanical behaviors and field tests of steel sleeves during shield receiving[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1948-1956. (in Chinese) doi: 10.11779/CJGE201611003

    [5] 郑石, 鞠世健. 泥水平衡盾构到达钢套筒辅助接收施工技术[J]. 现代隧道技术, 2010, 47(6): 51-56. doi: 10.3969/j.issn.1009-6582.2010.06.009

    ZHENG Shi, Ju Shi-jian. Technology of steel reception sleeve for slurry shield[J]. Modern Tunnelling Technology, 2010, 47(6): 51-56. (in Chinese) doi: 10.3969/j.issn.1009-6582.2010.06.009

    [6] 赵立锋. 土压平衡盾构到达钢套筒辅助施工接收技术[J]. 铁道标准设计, 2013(8): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201308021.htm

    ZHAO Li-feng. Auxiliary construction technology with steel sleeve used for the arrival of soil pressure balance shield[J]. Railway Standard Design, 2013(8): 89-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201308021.htm

    [7]

    KOZŁOWSKI M, KADELA M. Mechanical characterization of lightweight foamed concrete[J]. Advances in Materials Science and Engineering, 2018: 1-8.

    [8] 张磊, 杨鼎宜. 轻质泡沫混凝土的研究及应用现状[J]. 混凝土, 2005(8): 44-48. doi: 10.3969/j.issn.1002-3550.2005.08.010

    ZHANG Lei, YANG Ding-yi. State of study and application of light weight foam concrete[J]. Concrete, 2005(8): 44-48. (in Chinese) doi: 10.3969/j.issn.1002-3550.2005.08.010

    [9]

    AMRAN Y H M, FARZADNIA N, ALI A. Properties and applications of foamed concrete: a review[J]. Construction and Building Materials, 2015, 101: 990-1005. doi: 10.1016/j.conbuildmat.2015.10.112

    [10]

    JONES M R, MCCARTHY A. Behaviour and assessment of foamed concrete for construction applications[C]//Use of Foamed Concrete in Construction: Proceedings of the International Conference held at the University of Dundee, Scotland: Thomas Telford Publishing, 2005: 61-88.

    [11]

    RAMAMURTHY K, NAMBIAR E K K, RANJANI G I S. A classification of studies on properties of foam concrete[J]. Cement and Concrete Composites, 2009, 31(6): 388-396.

    [12] 方永浩, 王锐, 庞二波, 等. 水泥-粉煤灰泡沫混凝土抗压强度与气孔结构的关系[J]. 硅酸盐学报, 2010, 38(4): 621-626. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201004015.htm

    FANG Yong-hao, WANG Rui, PANG Er-bo, et al. Relationship between compressive strength and air-void structure of foamed cement-fly ash concrete[J]. Journal of the Chinese Ceramic Society, 2010, 38(4): 621-626. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201004015.htm

    [13] 周明杰, 王娜娜, 赵晓艳, 等. 泡沫混凝土的研究和应用最新进展[J]. 混凝土, 2009(4): 104-107. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200904044.htm

    ZHOU Ming-jie, WANG Na-na, ZHAO Xiao-yan, et al. Latest development of research and application on foam concrete[J]. Concrete, 2009(4): 104-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200904044.htm

    [14] 赵武胜, 陈卫忠, 谭贤君, 等. 高性能泡沫混凝土隧道隔震材料研究[J]. 岩土工程学报, 2013, 35(8): 1544-1552. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308024.htm

    ZHAO Wu-sheng, CHEN Wei-zhong, TAN Xian-jun, et al. High-performance foam concrete for seismic-isolation materials of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1544-1552. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308024.htm

    [15] GS foamconcrete Ltd., Farnworth Tunnels Infilling Works, Bolton[DB/OL]. http://www.gsfoamconcrete.co.uk/case-studies/farnworth-tunnels. 2020/03/01.
    [16] Eoin Murphy OTB Engineering Ltd., Reconstruction of Farnworth Tunnels, Modernising Victorian tunnels for the 21st century[DB/OL]. https://www.britishtunnelling.org.uk/ajax/functiongrabber.asp?loadfunction=downloadfile&f=downloads&filename=2016+eoin+murphy+farnworth+tunnels%2Epdf. 2016/05/6.
    [17]

    GAKIS A, SALAK P, ST. John A. Innovative geotechnical risk management for SCL tunnels[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2015, 168(5): 385-395.

    [18] 孙延盼, 万凯, 王涛, 等. 无锡地铁盾构组合工法接收施工技术[J]. 市政技术, 2018, 36(6): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SZJI201806033.htm

    SUN Yan-pan, WAN Kai, WANG Tao, et al. Composite construction method of subway shield receiving technology in Wuxi[J]. Track Traffic and Underground Engineering, 2018, 36(6): 82-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SZJI201806033.htm

    [19] 蒋明. 泡沫混凝土在盾构进洞过程中的应用[J]. 建筑科技, 2018, 2(3): 22-24.

    JIANG Ming. Application of foamed concrete in shield construction[J]. Construction Technology, 2018, 2(3): 22-24. (in Chinese)

图(15)  /  表(2)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  40
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-17
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-10-31

目录

    /

    返回文章
    返回