Hydraulic mechanism and swelling deformation theory of expansive soils
-
摘要: 膨胀土的水力作用主要是指水分(吸水、失水)和应力变化(卸荷、加荷)造成胀缩变形、裂隙发育和强度降低的作用,是膨胀土边坡失稳滑动的根本原因。由于膨胀土矿物表面带电,膨胀土在纯水和盐溶液中的膨胀行为差异很大,总是割裂开来各自研究,缺乏统一的膨胀变形理论。根据等温吸附理论,建立膨胀土的吸水体积Vw与上覆压力p和表面分维Ds的理论关系,基于膨胀变形等于膨胀土吸附水的体积,由此计算膨胀土的膨胀变形。膨胀土在盐溶液中的膨胀变形和剪切强度受渗透吸力影响,根据膨胀变形的分形模型,将盐溶液的渗透吸力π转化为修正有效应力
pe (区别于Terzaghi有效应力),不同浓度盐溶液中的膨胀变形与修正有效应力pe 表示为同一曲线,得到已有的膨胀变形试验数据的验证。Abstract: Theswelling deformation, crack growth and development and reduction of shear strength induced by the mineral-water interactions of expansive soils that including changes of water content and overburden loads are very important to the safety of expansive soil slopes. In addition, because of the electric charge on their mineral surface, the swelling behaviors of the expansive soils in pure water and salt solution are very different and always separated from each other, which and lack a unified theory of swelling deformation. The mineral-water interactions are explained by the isothermal water adsorption. According to the isothermal water adsorption, the increment of water volume (Vw) absorbed by montmorillonite during the swelling of expansive soils is dependent on the vertical overburden load and the surface fractality of mineral aggregates in voids. The water volume absorbed by montmorillonite is related to the surface fractal dimension and the vertical overburden pressure. The maximum swelling deformation is predicted according to the correlation of the absorbed water volume to vertical overburden pressure. The swelling deformation of expansive soils is affected by the osmotic suction in saline solutions. Based on the fractal model for the swelling deformation of expansive soils, the osmotic suction is transferred into the modified effective stress (pe ) which is distinguished from the Terzaghi’s effective stress concept. The Vw/Vm-pe relationship is expressed using a unique curve for expansive soils in saline solutions. The unique curve of the absorbed water volume is validated by the experimental data of swelling deformation of expansive soils. -
-
表 1 膨胀土的表面分维
Table 1 Surface fractal dimensions of bentonite
膨胀土 分维Ds R2 Aberdeen 2.58 0.991 Alaska 2.60 0.999 Argentine 2.44 0.999 Arizona 2.67 0.997 Belle Fourche 2.48 0.997 Blue Western 2.40 0.999 Cameron 2.60 0.993 California 2.48 0.996 California Red 2.51 0.996 Chiguagua 2.56 0.997 Czechoslovakia #1 2.46 0.998 Czechoslovakia 650 2.57 0.996 Danish 2.65 0.993 Guam 2.72 0.985 High Grade Western 2.46 0.994 India 2.50 0.996 Italian 2.44 0.995 Louisiana 2.52 0.999 Mexican 2.46 0.998 Missouri 2.65 0.989 Monte Amiata 2.58 0.999 Nevada 2.47 0.998 New Mexico 2.49 0.991 New Zealand 2.52 0.993 Oay 2.58 0.985 Polkville 2.56 0.996 Rio Escondido 2.47 0.999 Romanian 2.57 0.998 Sardinian 2.48 0.989 Smith ville 2.50 0.999 Texas 2.49 0.999 Upton#l 2.49 0.998 Upton#2 2.49 0.998 Western Ca 2.52 0.998 Yellow Western 2.46 0.998 Yugoslav 2.49 0.991 -
[1] 徐永福, 刘松玉. 非饱和土强度理论及其工程应用[M]. 南京: 东南大学出版社, 1999. XU Yong-fu, LIU Song-yu. Strength Theory of Unsaturated Soil and Its Engineering Application[M]. Nanjing: Southeast University Press, 1999. (in Chinese)
[2] 徐永福, 陈永战, 刘松玉, 等. 非饱和膨胀土的三轴试验研究[J]. 岩土工程学报, 1998, 20(3): 14-18. doi: 10.3321/j.issn:1000-4548.1998.03.005 XU Yong-fu, CHEN Yong-zhan, LIU Song-yu, et al. Triaxial text on unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(3): 14-18. (in Chinese) doi: 10.3321/j.issn:1000-4548.1998.03.005
[3] 徐永福. 膨胀土地基的处理方法[J]. 河海大学学报(自然科学版), 1998, 26(6): 26-30. doi: 10.3321/j.issn:1000-1980.1998.06.006 XU Yong-fu. Methods of improvement for expansive soil basement[J]. Journal of Hohai University (Natural Sciences), 1998, 26(6): 26-30. (in Chinese) doi: 10.3321/j.issn:1000-1980.1998.06.006
[4] 徐永福, 龚友平, 殷宗泽. 非饱和膨胀土强度的分形特征[J]. 工程力学, 1998, 15(2): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX802.010.htm XU Yong-fu, GONG You-ping, YIN Zong-ze. Fractal characteristics of shear strength for unsaturated expansive soils[J]. Engineering Mechanics, 1998, 15(2): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX802.010.htm
[5] 徐永福, 龚友平, 殷宗泽. 宁夏膨胀土膨胀变形特征的试验研究[J]. 水利学报, 1997, 28(9): 27-30. doi: 10.3321/j.issn:0559-9350.1997.09.005 XU Yong-fu, GONG You-ping, YIN Zong-ze. Tests on swelling deformation of expansive soils[J]. Journal of Hydraulic Engineering, 1997, 28(9): 27-30. (in Chinese) doi: 10.3321/j.issn:0559-9350.1997.09.005
[6] 徐永福, 史春乐. 宁夏膨胀土的膨胀变形规律[J]. 岩土工程学报, 1997, 19(3): 98-101. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC703.014.htm XU Yong-fu, SHI Chun-le. Swelling deformation of Ningxia expansive soil[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 98-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC703.014.htm
[7] 徐永福. 膨胀土地基承载力研究[J]. 岩石力学与工程学报, 2000, 19(3): 387-390. doi: 10.3321/j.issn:1000-6915.2000.03.030 XU Yong-fu. Study on bearing capacity of expansive soil basement[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 387-390. (in Chinese) doi: 10.3321/j.issn:1000-6915.2000.03.030
[8] 徐永福. 非饱和膨胀土的结构模型和力学性质的研究[J]. 岩石力学与工程学报, 1998, 17(5): 610. doi: 10.3321/j.issn:1000-6915.1998.05.025 XU Yong-fu. The structural model and the mechanical properties of unsaturated expansive soils[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(5): 610. (in Chinese) doi: 10.3321/j.issn:1000-6915.1998.05.025
[9] 徐永福. 膨胀土的浸水规律[J]. 河海大学学报(自然科学), 1998, 26(5): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX805.012.htm XU Yong-fu. Laws on hydraulic conductivity of expansive soils[J]. Journal of Hohai University (Natural Sciences), 1998, 26(5): 66-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX805.012.htm
[10] YONG R N, WARKENTIN B P. Soil Properties and Behavior[M]. Amsterdam: Elsevier, 1975.
[11] MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. Hoboken: John Wiley & Sons, Inc., 2005.
[12] BOLT G H. Physicochemical analysis of compressibility of pure clays[J]. Géotechnique, 1956, VI(2): 86-93.
[13] KOMINE H, OGATA N. New equation for swelling character -istics of bentonite based buffer materials[J]. Canadian Geotechnical Journal, 2003, 40: 460-475. doi: 10.1139/t02-115
[14] SPOSITO G. The Thermodynamic of Soil Solution[M]. London: Oxford Clarendon Press, 1981.
[15] XU Y F, SUN D A. Application of fractal micropore to deter mination of unsaturated soil strength[J]. Fractals, 2001, 9(1): 51-60. doi: 10.1142/S0218348X01000506
[16] FRIESEN W I, MIKULA R J. Fractal dimensions of coal particles[J]. J Coll Interf Sci, 1987, 120: 263-271. doi: 10.1016/0021-9797(87)90348-1
[17] XU Y F. Surface irregularity of solids in molecular domain[J]. Chaos, Solitons & Fractals, 2004, 21(2): 435-444.
[18] XU Y F. Surface fractal dimension of swelling clay minerals[J]. Fractals, 2003, 11(4): 353-362. doi: 10.1142/S0218348X03002245
[19] XU Y F, LIU S Y. Fractal characteristic of grain-size distribution of expansive soil[J]. Fractals, 1999, 7(4): 359-366.
[20] XU Y F, DONG P. Fractal approach to hydraulic properties in porous media[J]. Chaos, Solitons & Fractals, 2004, 19(2): 327-337.
[21] XU Y F, MATSUOKA H, SUN D A. Swelling characteristics of fractal-textured bentonite and its mixtures[J]. Applied Clay Sci, 2003, 22(4): 197-209.
[22] XU Y F, SUN D A, YAO Y P. Surface fractal dimension of bentonite and its application to determination of swelling properties[J]. Chaos, Solitons & Fractals, 2004, 19(2): 347-356.
[23] AVNIR D, JARONIEC M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir, 1989, 5: 1431-1433.
[24] YONG R N. Soil suction and soil-water potential in swelling clays in engineered clay barriers[J]. Eng Geol, 1999, 54(1/2): 3-13.
[25] MOLLINS L H, STEWART D I, COUSENS T W. Predicting the properties of bentonite-sand mixtures[J]. Clay Miner, 1996, 31: 243-252.
[26] LOW P F. The Swelling of clay: II Montmorillonites[J]. Soil Sci Soc Am J, 1980, 44(4): 667-676.
[27] 徐永福. 高放废物地质处置库中膨润土的侵蚀机理和模型研究综述[J]. 地球科学进展, 2017, 32(10): 1050-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201710006.htm XU Yong-fu. Mechanisms and models for bentonite erosion used for geologic[J]. Advances in Earth Science, 2017, 32(10): 1050-1061. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201710006.htm
[28] MESRI G, OLSON R E. Consolidation characteristics of mont- morillonite[J]. Géotechnique, 1971, 21(4): 341-352.
[29] STUDDS P G, STEWART D I, COUSENS T W. The effects of salt solutions on the properties of bentonite-sand mixtures[J]. Clay Miner, 1998, 33: 651-661.
[30] DI MAIO C, SANTOLI L, SCHIAVONE P. Volume change behaviour of clays: the influence of mineral composition, pore fluid composition and stress state[J]. Mech Mater, 2004, 36: 435-451.
[31] CALVELLO M, LASCO M, VASSALLO R. Compressibility and residual shear strength of smectitic clays: influence of pore aqueous solutions and organic solvents[J]. Riv Ital Geotec, 2005(1): 34-46.
-
期刊类型引用(27)
1. 冯海华,陆勇,黄卉. 粗粒土与结构接触面的空间曲率效应试验研究. 土工基础. 2025(01): 122-126 . 百度学术
2. 胡达,肖超,梁小强,孔纲强,黎永索,蒋磊,杨仙. 考虑土拱效应的盾构隧道施工地表沉降预测. 工程地质学报. 2025(02): 783-793 . 百度学术
3. 唐昌意,李松,李智文,崔凯,樊军伟,秦晓同. 挡墙绕顶转动下的有限土体主动土压力研究. 中国公路学报. 2025(04): 43-53 . 百度学术
4. 刘光秀,党发宁,宋靖宇. 竖向分层土被动土压力的计算与分析. 应用基础与工程科学学报. 2024(03): 875-887 . 百度学术
5. 喻卫华. 考虑基坑坑内有限土体被动土压力研究. 市政技术. 2024(06): 75-80+134 . 百度学术
6. 张振波,黄安,周佳迪,刘志春,孙明磊. 基坑近接地铁车站主动土压力合力算法研究. 岩土工程学报. 2024(07): 1516-1524 . 本站查看
7. 刘志春,马博,胡指南,张振波,杜孔泽. 邻近地下结构基坑主动土压力分布规律试验研究. 岩土力学. 2024(S1): 33-41 . 百度学术
8. 程振威,李又云,王传波. 减荷措施下高填涵洞竖向土压力计算. 地下空间与工程学报. 2024(06): 1790-1797 . 百度学术
9. 刘新喜,李彬,王玮玮,李松,贺程. 基于倾斜分层的挡墙主动土压力计算方法. 交通科学与工程. 2023(02): 41-48 . 百度学术
10. 张振波,周佳迪,孙明磊,刘志春,胡指南. 近接增建基坑有限土体土压力计算方法探究. 铁道科学与工程学报. 2023(06): 2091-2102 . 百度学术
11. 薛德敏,李天斌,张帅. 基于位移控制的双排桩桩后滑坡推力计算方法. 岩土工程学报. 2023(09): 1979-1986 . 本站查看
12. 刘新喜,贺程,王玮玮,李彬. 放坡状态有限土体刚性挡墙滑动稳定性分析. 交通科学与工程. 2023(05): 37-44 . 百度学术
13. 刘杰锋,曹海莹,王优群,高艳斌. 考虑土拱效应的黏性土主动土压力解析解. 铁道科学与工程学报. 2023(12): 4604-4612 . 百度学术
14. 方焘,冉井念,刘春,张婷,徐翔. 考虑位移影响的有限土体基坑土压力研究. 重庆交通大学学报(自然科学版). 2022(01): 96-102+110 . 百度学术
15. 蔡忠伟,朱彦鹏,武开通,马响响,丁亚飞. 临河基坑有限成层土体主动土压力计算. 科学技术与工程. 2022(02): 666-675 . 百度学术
16. 赖丰文,刘松玉,杨大禹,程月红,范钦建. 有限宽度填土挡墙主动土压力的普适解法. 岩土工程学报. 2022(03): 483-491 . 本站查看
17. 马明,李明东,郎钞棚,张京伍,万愉快. 刚性挡墙绕底转动时的非极限主动土压力数值解. 应用数学和力学. 2022(03): 312-321 . 百度学术
18. 刘新喜,李彬,王玮玮,贺程,李松. 基于主应力迹线分层的有限土体土压力计算. 岩土力学. 2022(05): 1175-1186 . 百度学术
19. 马明,李明东,张京伍,朱丽萍. 考虑层间剪应力的黏性土非极限主动土压力数值解. 广西大学学报(自然科学版). 2022(04): 854-861 . 百度学术
20. 吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 . 百度学术
21. 关振长,黄金峰,何亚军,宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算. 工程力学. 2022(11): 196-202+256 . 百度学术
22. 孙望成,张道兵,蒋瑾,蔚彪,尹华东. 考虑Hoek-Brown准则的挡土墙主动土压力. 吉首大学学报(自然科学版). 2021(01): 61-65 . 百度学术
23. 邵鹏,刘念武,房凯,黄栩,林强. 软土地区相邻深大基坑间有限土体土压力研究. 建筑施工. 2021(04): 691-695 . 百度学术
24. 王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 . 百度学术
25. 王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 . 百度学术
26. 张常光,吴凯,隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述. 岩土工程学报. 2021(12): 2200-2208 . 本站查看
27. 陈建旭,钱波,郭宁,余明东,庄锦亮. 倾斜挡墙黏性填土非极限主动土压力计算. 长江科学院院报. 2021(12): 137-145 . 百度学术
其他类型引用(47)