• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土石混合体—基岩界面剪切力学特性试验研究

杨忠平, 蒋源文, 李诗琪, 李进, 胡元鑫

杨忠平, 蒋源文, 李诗琪, 李进, 胡元鑫. 土石混合体—基岩界面剪切力学特性试验研究[J]. 岩土工程学报, 2020, 42(10): 1947-1954. DOI: 10.11779/CJGE202010021
引用本文: 杨忠平, 蒋源文, 李诗琪, 李进, 胡元鑫. 土石混合体—基岩界面剪切力学特性试验研究[J]. 岩土工程学报, 2020, 42(10): 1947-1954. DOI: 10.11779/CJGE202010021
YANG Zhong-ping, JIANG Yuan-wen, LI Shi-qi, LI Jin, HU Yuan-xin. Experimental study on shear mechanical properties of soil-rock mixture-bedrock interface[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1947-1954. DOI: 10.11779/CJGE202010021
Citation: YANG Zhong-ping, JIANG Yuan-wen, LI Shi-qi, LI Jin, HU Yuan-xin. Experimental study on shear mechanical properties of soil-rock mixture-bedrock interface[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1947-1954. DOI: 10.11779/CJGE202010021

土石混合体—基岩界面剪切力学特性试验研究  English Version

基金项目: 

国家重点研发计划项目 2018YFC1504802

中央高校基本科研业务经费项目 2019CDXYTM0032

国家自然科学基金项目 41772306

详细信息
    作者简介:

    杨忠平(1981—),男,教授,博士生导师,主要从事环境岩土与边坡稳定性方面的教学与研究工作。E-mail:yang-zhp@163.com

  • 中图分类号: TU431

Experimental study on shear mechanical properties of soil-rock mixture-bedrock interface

  • 摘要: 填方体-下伏基岩接触面间的剪切强度是控制高填方体或堆积体边坡稳定性的重要因素,界面强度参数取值是高填方工程设计的重要参数之一。通过较系统地室内大型直剪试验探讨了接触面粗糙度对土石混合料-基岩接触面剪切力学特性的影响。结果表明:在低法向应力作用下,剪应力-剪切位移曲线前期呈现出应变硬化现象,后期呈现出塑性应变现象,且接触面粗糙度越大接触面发生剪切破坏时变形越小;在高法向应力作用下,曲线呈现出应变硬化现象,无明显峰值;相同法向应力水平作用下,接触面粗糙度越大,土石混合体-基岩接触面剪切刚度越大。剪切界面上块石的破碎形态可分为完全破碎、部分破碎和表面磨损3种,随着接触面粗糙度的增加,剪切界面上块石的破碎总数也增加。接触面的抗剪强度、内摩擦角和表观黏聚力随着接触面粗糙度的增加而增大,相比于内摩擦角,接触面的表观黏聚力增大较为明显。接触面粗糙度对剪切带宽度有影响作用,表现为接触面粗糙度越大,剪切带越宽。
    Abstract: The shear strength of the interface between the fill and the underlying bedrock is an important factor to control the stability of high fill or accumulation slopes. The value of the interface strength parameter is one of the important parameters for the design of high backfills. The effect of the contact surface roughness on the shear mechanical properties of the soil-rock mixture-bedrock contact surface is explored through the systematic large-scale indoor direct shear tests.The test results show that under the action of low normal stress, the shear stress-shear displacement curve shows strain hardening in the early stage and plastic strain in the later stage, and the greater the roughness of the contact surface, the more the contact surface deforms when shear failure occurs. Under the action of high normal stress, the curve shows strain hardening without obvious peaks. Under the same normal stress level, the greater the contact surface roughness, the greater the shear stiffness of the soil-rock mixture-base rock interface. The crushing morphology of the rock at the shear interface includes three types: complete crushing, partial crushing, and surface abrasion. As the contact surface roughness increases, the total number of rock crushing at the shear interface also increases. The shear strength, internal friction angle and apparent cohesion of the contact surface increase with the increase of the roughness of the contact surface. Compared with the internal friction angle, the apparent cohesion of the contact surfaces increases significantly. The roughness of the contact surface has an effect on the width of the shear band, which shows that the larger the roughness of the contact surface is, the wider the shear band is.
  • 长期交通荷载作用下软黏土层发生过大变形,严重影响交通设施的安全运行。因此,有必要对交通荷载作用下软黏土地层中的隧道或基坑工程进行动力响应分析。阻尼比作为一个重要的动力分析参数,可以通过室内试验的方式获取。然而,以往研究中,主要采用恒定围压动三轴试验来获取黏土或砂土的阻尼比。例如,Ishibashi等[1]考虑有效固结应力的影响,建立了一个阻尼比计算模型;Lee等[2]提出了一个适用于台北黏土的阻尼比计算模型;Ling等[3]针对冻土开展了恒定围压动三轴试验,研究了阻尼比随振次的变化规律,并发现了阻尼比随振次的增大呈减小趋势。

    另一方面,以往研究中通常采用轴向循环荷载来模拟交通荷载,这一简化与交通荷载引起的真实应力场不相符。实际上,交通荷载引起的真实应力场既包含循环变化的正应力,也包含循环变化的水平应力[4-5]。当前,许多学者已经开展了大量的变围压循环三轴试验来研究循环围压对土体动力特性的影响。Gu等[4]对比分析了有、无循环围压作用下土体的剪切模量变化规律。

    从上述的研究成果来看,循环围压对土体动力特性的影响不能忽视。同时,以往研究大多针对正常固结土,对超固结土在变围压循环荷载作用下的动力特性研究较少,对其阻尼比的变化规律更是鲜有研究。因此,本文主要包含了两部分内容:①通过开展变围压动三轴试验,分析循环围压和超固结比对软黏土阻尼比的影响;②基于试验结果,建立一个能描述变围压循环荷载作用下超固结软黏土阻尼比变化规律的经验模型。

    试验所用土样取自宁波地区,取土深度大约为28.0~30.0 m。按照《土工试验规程:GB/T 50123—2019》可获取天然土样重度为17.6 kN/m3,天然含水率、液限和塑限分别为43.9%,51.5%,23.3%。

    按照《土工试验规程:GB/T 50123—2019》制备重塑试样(直径38 mm,高76 mm),并采用真空和反压联合方式对试样进行饱和。当B值达到0.95以上时,认为达到饱和,此时施加在试样上的反压和围压分别为300,320 kPa。为得到不同超固结比的试样,首先,对饱和后的试样施加不同固结应力进行固结,当固结完成时施加在试样上的有效固结应力分别为100,200,400 kPa;随后,降低固结围压对试样进行卸载,当卸载完成时,施加在所有试样上的有效固结围压均为50 kPa。通过上述方法,最终可以得到超固结比OCR分别为2,4,8的试样。另一方面,为了得到正常固结土(OCR=1),将饱和后的试样在一定压力下进行固结,固结完成时施加在试样上的有效固结应力为50 kPa。随后,关闭排水阀门,开展动力加载试验,振动频率1 Hz,振动10000次。

    本试验采用GDS变围压动三轴试验系统,该系统可独立控制循环轴向偏应力和循环围压。为模拟交通荷载,试验中循环偏应力和循环围压的加载波形均为半正弦波,且加载波形相位差为0。另一方面,采用应力路径斜率η和循环应力比CSR表征循环围压[5]和循环偏应力[6],表达式如下:

    CSR=qampl/2po=qampl/2σ3
    (1)
    η=pamplqampl=(σampl1+2σampl3)/3qampl=1/3+σampl3qampl 
    (2)

    式中,pamplqamplσampl3分别表征循环平均主应力幅值、循环偏应力幅值及侧向应力幅值,σ3po分别表示固结完成之后的有效固结围压、平均有效正应力。不同试样加载参数见表 1所示。

    表  1  循环三轴试验方案
    Table  1.  Programs of cyclic triaxial tests
    编号 OCR CSR qampl/kPa σampl3/kPa η
    C01 1 0.35 35 24 1.00
    C02 2 0.35 35 24 1.00
    C03 4 0.35 35 25 1.00
    C04 8 0.35 35 24 1.00
    C05 4 0.35 35 0 0.33
    C06 4 0.35 35 41 1.50
    Y01 8 0.35 35 0 0.33
    Y02 2 0.35 35 41 1.50
    Y03 8 0.35 35 41 1.50
    Y04 2 0.35 35 0 0.33
    下载: 导出CSV 
    | 显示表格

    为便于研究,利用第一次振次对应的阻尼比D1对不同振次对应的阻尼比DN进行归一化处理。图 1为不同应力路径斜率η条件下归一化阻尼比随累积塑性应变εp的变化曲线。图 1表明,不同应力路径斜率下的DN/D1εp曲线趋势一致,即DN/D1εp的增长而逐渐减小,同时在变围压应力路径(η=1.00,1.50)条件下试样阻尼比均小于恒围压应力路径(η=0.33)下对应阻尼比,例如当振动次数N=10000,应力路径斜率η为0.33,1.0,1.5时,对应的归一化阻尼比分别为0.17,0.18,0.26。

    图  1  不同循环围压下归一化阻尼比随累积塑性应变变化曲线
    Figure  1.  Relationship between normalized damping ratio and cumulative axial strain under different cyclic confining pressures

    当CSR=0.35,应力路径斜率η=1.0时,不同超固结比土样在变围压动三轴试验中阻尼比随累积塑性应变的关系曲线与图 1类似。不同超固结比土样对应的归一化阻尼比均随累积塑性应变的增加逐渐减小,且衰减速率呈减小趋势。一定累积塑性应变条件下,归一化阻尼比的衰减量随超固结比的增大而增大,意味着正常固结土的归一化阻尼比较超固结土的归一化阻尼比大。例如,当试验完成时,正常固结土的归一化阻尼比为0.34,而超固结比OCR=2,4,8时对应的归一化阻尼比分别为0.27,0.19,0.18,归一化阻尼比随超固结比OCR由1增大至8时,分别减少了20.6%,44.1%,47.1%。

    基于上述试验结果,本文提出了一个可以考虑阻尼比随累积塑性应变的变化规律的表达式:

    DND1=11+(aεp)b
    (3)

    式中,参数ab为拟合参数,受循环围压和超固结比影响,DND1分别为第N次和第1次循环对应的阻尼比。

    利用式(3)对试验结果进行拟合,得到不同试验条件下对应的拟合参数取值。在此基础上,为进一步研究参数aD1与应力路径斜率η、超固结比OCR的关系,假设超固结比和循环围压对上述两个参数的影响独立,则有:

    a=a1(OCR)a2(η)
    (4)
    D1=D11(OCR)D12(η)
    (5)

    式中,a1D11表征超固结比的影响,a2D12表征循环围压的影响。

    进一步的,对相同应力路径斜率,不同超固结比试验条件下得到的拟合参数a1D11进行分析,建立上述两个拟合参数分别和超固结比的相关关系,如图 2所示。从图 2中可以看出,参数a1D11分别与OCR满足对数和幂函数关系:

    a1=22.834lnOCR+2.162
    (6)
    D11=0.232OCR0.321
    (7)
    图  2  拟合参数随超固结比变化曲线
    Figure  2.  Relationship between fitting parameters and OCR

    然后,为了考虑循环围压的影响,需要先将超固结比的影响从式(4),(5)中去除。当应力路径斜率η=1.00,超固结比OCR=4时,通过式(6),(7)可以得到对应的a1D11值分别为33.817和0.149,则超固结比OCR=4,应力路径斜率η=0.33,1.00,1.50时对应的拟合参数aD1分别利用33.817和0.149进行归一化,即为a2D12的取值。最后,即可得到归一化参数a2D12分别随归一化应力路径斜率(η/η0η0=1.00)的关系曲线,见图 3所示,从图中可以看出,参数a2D12η/η0满足线性关系:

    a2=0.555η/ηη0η0+0.602
    (8)
    D12=0.177η/ηη0η0+1.131
    (9)
    图  3  拟合参数随应力路径斜率变化曲线
    Figure  3.  Relationship between fitting parameters and η/η0

    由于参数b随超固结比OCR的变化没有一致性规律,且其变化量较小。因此,为方便模型的使用,式(3)中参数b取一定值,即ˉb=0.677。

    最后将式(6),(7),(8),(9)和ˉb代入式(3)中即可得到不同超固结土在变围压循环荷载作用下阻尼比与累积塑性应变的关系表达式:

    DN=0.232OCR0.321(0.177η/η0+1.131)1+[(22.834lnOCR+2.162)(0.555η/η0+0.602)ϵp]0.677
    (10)

    将不同试验条件对应的OCR和η代入式(10)中,即可得到不同试验条件下阻尼比的计算值随累积塑性应变的变化曲线,见图 4所示。从图 4可以看出,由式(10)得到的阻尼比计算值与试验值较为接近,表明式(10)能够较好地描述阻尼比随累积塑性应变的变化规律。

    图  4  拟合和实测的DNεp曲线对比
    Figure  4.  Comparison between measured and predicted curves of DNεp

    (1)不论试验条件如何,归一化阻尼比均随累积塑性应变的增大而减小。循环围压和超固结比对归一化阻尼比的变化规律有一定影响,且归一化阻尼比随循环围压和超固结比的增大而减小。

    (2)不同超固结土在变围压循环荷载作用下,其归一化阻尼比和累积塑性应变满足关系表达式DN/D1=1/[1+(aεp)b]

    (3)超固结比和循环围压对阻尼比的影响由拟合参数aD1体现,其中表征超固结比影响的参数a1D11与超固结比OCR分别满足对数和幂函数关系,而表征应力路径斜率影响的参数a2D12则随应力路径斜率η的变化分别呈线性增长和线性减小关系。

  • 图  1   填方体边坡示意图

    Figure  1.   Schematic diagram of fill slope

    图  2   ZJ50-2G大型粗粒土压缩直剪仪示意图

    Figure  2.   ZJ50-2G large coarse soil compression direct shear apparatus

    图  3   样本筛分结果

    Figure  3.   Sample sieving results

    图  4   土石混合体试样级配曲线

    Figure  4.   Gradation curve of soil-rock mixture samples

    图  5   台阶状灰岩试件界面示意图

    Figure  5.   Interface diagram of step limestone test piece

    图  6   加工后的岩石试件

    Figure  6.   Processed rock samples

    图  7   剪切应力-剪切位移曲线

    Figure  7.   Shear stress-shear displacement curves

    图  8   块石骨架形成示意图

    Figure  8.   Schematic diagram of block stone skeleton formation

    图  9   块石破碎后重新形成骨架示意图

    Figure  9.   Schematic diagram of re-formed skeleton after rock is broken

    图  11   块石破碎形态

    Figure  11.   Broken forms of block stone

    图  10   块石破碎模式示意图

    Figure  10.   Schematic diagram of block crushing mode

    图  12   染色块石破碎与粗糙度关系

    Figure  12.   Relationship between broken stone blocks and roughness

    图  13   不同接触面粗糙度下抗剪强度与法向应力关系曲线

    Figure  13.   Relationship between shear strength and normal stress under different contact surface roughnesses

    图  14   接触面强度参数与粗糙度关系曲线

    Figure  14.   Relationship between contact surface strength parameters and roughness

    图  15   不同粗糙度下剪切带示意图

    Figure  15.   Schematic diagram of shear zone with different roughnesses

    表  1   土石混合体及灰岩基本物理参数指标

    Table  1   Basic physical parameter indexes of soil-rock aggregate

    土体类型物理参数指标
    干密度/(g·m-3)孔隙比天然含水率/%天然密度/(kg·m-3)c/kPaφ/(°)弹性模量/GPa单轴抗压强度/MPa
    土石混合体17880.249.32211023.910.54
    灰岩2730143335.6729.1468.09
    下载: 导出CSV

    表  2   台阶基岩界面力学参数指标

    Table  2   Mechanical parameter indexes of step bedrock interface

    试件编号坡率台阶高/cm台阶宽/cm粗糙度Y/mmJ斜面α/(°)
    11∶225500.39926.56
    21∶1.752543.750.43129.74
    31∶1.52537.440.46233.69
    下载: 导出CSV

    表  3   室内大型直剪试验方案

    Table  3   Indoor large-scale direct shear test schemes

    试件编号粗糙度C法向压力/kPa
    10.399200,400,600,800
    20.431200,400,600,800
    30.462200,400,600,800
    下载: 导出CSV

    表  4   界面抗剪强度

    Table  4   Interface shear strengths

    项目试件编号
    123
    抗剪强度σn=200 kPa179.0500224.2300264.8700
    σn=400 kPa356.9700401.5600460.8900
    σn=600 kPa490.3700536.6700575.6700
    σn=800 kPa605.5600694.8200794.5600
    粗糙度0.39900.43100.4620
    相关系数R0.98990.99750.9874
    表观黏聚力/kPa54.750077.600098.0400
    内摩擦角/(°)35.240037.720040.4300
    下载: 导出CSV
  • [1] 张强, 汪小刚, 赵宇飞, 等. 土石混合体三维细观结构随机重构及其力学特性颗粒流数值模拟研究[J]. 岩土工程学报, 2017, 41(1): 60-69. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901009.htm

    ZHANG Qiang, WANG Xiao-gang, ZHAO Yu-fei, et al. Random reconstruction of three- dimensional micro structure of soil rock mixture and numerical simulation of its mechanical properties particle flow[J]. Chinese Journal of geotechnical Engineering, 2017, 41(1): 60-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901009.htm

    [2] 徐文杰, 胡瑞林. 土石混合体概念、分类及意义[J]. 水文地质工程地质, 2009, 36(4): 50-56. doi: 10.3969/j.issn.1000-3665.2009.04.012

    XU Wen-jie, HU Rui-lin. Conception, classification and significations of soil-rock mixture[J]. Hydrogeology and Engineering Geology, 2009, 36(4): 50-56. (in Chinese) doi: 10.3969/j.issn.1000-3665.2009.04.012

    [3] 李天斌, 刘吉, 任洋, 等. 预加固高填方边坡的滑动机制:攀枝花机场12#滑坡[J]. 工程地质学报, 2012, 20(5): 723-731. doi: 10.3969/j.issn.1004-9665.2012.05.011

    LI Tian-bin, LIU Ji, REN Yang, et al. Sliding mechanism of pre reinforced high fill slope: Panzhihua airport No. 12 landslide[J]. Journal of Engineering Geology, 2012, 20(5): 723-731. (in Chinese) doi: 10.3969/j.issn.1004-9665.2012.05.011

    [4] 刘桂琴, 王子玉, 高振鲲. 贵州某高填方滑塌变形监测分析[J]. 人民长江, 2007(11): 148-149, 158. doi: 10.3969/j.issn.1001-4179.2007.11.057

    LIU Gui-qin, WANG Zi-yu, GAO Zhen-kun. Monitoring and analysis of a high fill landslide in Guizhou[J]. People's Yangtze River, 2007(11): 148-149, 158. (in Chinese) doi: 10.3969/j.issn.1001-4179.2007.11.057

    [5] 张嘎, 张建民. 粗粒土与结构接触面单调力学特性的试验研究[J]. 岩土工程学报, 2004, 26(1): 21-25. doi: 10.3321/j.issn:1000-4548.2004.01.003

    ZHANG Ga, ZHANG Jian-min. Experimental study on monotonic mechanical properties of interface between coarse-grained soil and structure[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 21-25. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.01.003

    [6]

    ZHANG G, ZHANG J M. Large-scale apparatus for monotonic and cyclic soil-structure interface test[J]. Geotech Test J, 2006, 29(5): 401-408.

    [7]

    BORANA L, YIN J H, SINGH D N, et al. Interface behavior from suction controlled direct shear test on completely decomposed granitic soil and steel surfaces[J]. Int J Geomech, 2016, 16(6): 1-14.

    [8]

    BORANA L, YIN J H, SINGH D N, et al. Influence of matric suction and counterface roughness on shearing behavior of completely decomposed granitic soil and steel interface[J]. Indian Geotech J, 2016, 47(2): 150-160.

    [9] 石熊, 张家生, 刘蓓, 等. 红黏土土与混凝土接触面剪切特性试验研究[J]. 中南大学学报(自然科学版), 2015, 46(5): 1826-1831.

    SHI Xiong, ZHANG Jia-sheng, LIU Bei, et al. Experimental study on shear characteristics of interface between red clay and concrete[J]. Journal of Central South University (Natural Science Edition), 2015, 46(5): 1826-1831. (in Chinese)

    [10] 陈俊桦, 张家生, 李键. 接触面粗糙度对红黏土-混凝土接触面力学性质的影响[J]. 中南大学学报(自然科学版), 2016(47): 1682-1688. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201605030.htm

    CHEN Jun-hua, ZHANG Jia-sheng, LI Jian. Effect of interface roughness on mechanical properties of red clay concrete interface[J]. Journal of Central South University (Natural Science Edition), 2016(47): 1682-688. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201605030.htm

    [11] 张吉顺, 华斌. 土与不同桩侧表面粗糙度接触面剪切试验研究[J]. 结构工程师, 2011, 27(3): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201103021.htm

    ZHANG Ji-shun, HUA Bin. Shear test research on contact surface between soil and different pile side surface roughness[J]. Structural Engineer, 2011, 27(3): 118-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201103021.htm

    [12] 陈静, 李邵军, 孟凡震, 等. 三峡库区滑坡土石混合体与桩的接触面力学特性试验研究[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2888-2895. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1040.htm

    CHEN Jing, LI Shao-jun, MENG Fan-zhen, et al. Experimental study on the mechanical properties of the interface between the landslide soil rock mixture and the pile in the Three Gorges Reservoir Area[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2888-2895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1040.htm

    [13]

    CEN D, HUANG D, REN F. Shear deformation and strength of the interphase between the soil-rock mixture and the benched bedrock slope surface[J]. Acta Geotechnica, 2016, 12(2): 391-413.

    [14] 水利水电工程粗粒土试验规程:DL/T 5356—2006[S]. 2006.

    Code for Coarse-Grained Soil Test for Hydropower and Water Conservancy Engineering: DL/T 5356—2006[S]. 2006. (in Chinese)

    [15] 刘新荣, 涂义亮, 王鹏, 等. 基于大型直剪试验的土石混合体颗粒破碎特征研究[J]. 岩土工程学报, 2017, 39(8): 1425-1434. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708013.htm

    LIU Xin-rong, TU Yi-liang, WANG Peng, et al. Study on particle breakage characteristics of soil rock mixture based on large-scale direct shear test[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1425-1434. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708013.htm

    [16] 赵春风, 龚辉, 赵程, 等. 考虑法向应力历史的茹土一混凝土界面弹塑性分析[J]. 岩石力学与工程学报, 2012, 31(4): 848-855.

    ZHAO Chun-feng, GONG Hui, ZHAO Cheng, et al. Elastoplastic analysis of Ru Tu concrete interface considering normal stress history[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 848-855. (in Chinese)

    [17] 杨忠平, 李万坤, 胡元鑫, 等. 压实系数对粗粒土剪切特性的影响[J]. 地下空间与工程学报, 2017, 13(2): 348-356. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201702010.htm

    YANG Zhong-ping, LI Wan-kun, HU Yuan-xin, et al. Effect of compaction coefficient on shear properties of coarse-grained soil[J]. Journal of Underground Space and Engineering, 2017, 13(2): 348-356. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201702010.htm

    [18] 陆勇, 周国庆, 夏红春, 等. 中、高压下粗粒土-结构接触面特性受结构面形貌尺度影响的试验研究[J]. 岩土力学, 2013, 34(12): 3491-3499. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312023.htm

    LU Yong, ZHOU Cuo-qing, XIA Chun-hong, et al. Effect of shape scale on characteristics of coarse grained soil-structural interface under medium and high pressures[J]. Rock and Soil Mechanics, 2013, 34(12): 3491-3499. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312023.htm

    [19] 张俊峰, 王协群, 邹维列, 等. 土-格栅界面强度参数和剪切刚度试验研究[J]. 长江科学院院报, 2014, 31(3): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201403013.htm

    ZHANG Jun-feng, WANG Xie-qun, ZOU Wei-li, et al. Experimental study on strength parameters and shear stiffness of soil grid interface[J]. Journal of Changjiang Academy of Sciences, 2014, 31(3): 77-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201403013.htm

    [20] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.

    LI Guang-xin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)

    [21] 马林. 钙质土的剪切特性试验研究[J]. 岩土力学, 2016(增刊1): 309-316. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1041.htm

    MA Lin. Experimental study on shear properties of calcareous soil[J]. Geotechnical Mechanics, 2016(S1): 309-316. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1041.htm

  • 期刊类型引用(5)

    1. 郑刚,张文彬,赵继辉,周海祚. 桩-承台不同连接方式下的桩基-结构动力响应离心机振动台试验研究. 建筑结构学报. 2025(01): 204-211+222 . 百度学术
    2. 王永志,汤兆光,张雪东,孙锐,张宇亭. 超重力离心模型试验中孔隙水压测试影响因素与标定方法. 岩石力学与工程学报. 2022(S2): 3433-3443 . 百度学术
    3. 汤兆光,王永志,段雪锋,孙锐,王体强. 分体高频响应微型孔隙水压力传感器研制与性能评价. 岩土工程学报. 2021(07): 1210-1219+1375-1376 . 本站查看
    4. 孔维伟,贾妍,卢娜. 基于PVDF压力传感器的三维流速仪的流速模拟分析. 新型工业化. 2021(06): 205+230 . 百度学术
    5. 汤兆光,王永志,孙锐,段雪锋,王体强,王浩然. 动力离心试验微型孔压传感器研制与性能验证. 岩土工程学报. 2020(S2): 129-134 . 本站查看

    其他类型引用(6)

图(15)  /  表(4)
计量
  • 文章访问数:  457
  • HTML全文浏览量:  35
  • PDF下载量:  325
  • 被引次数: 11
出版历程
  • 收稿日期:  2020-01-07
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-09-30

目录

/

返回文章
返回