Application of orthogonal-contour method in calibration of microscopic parameters of rockfill materials
-
摘要: 针对堆石料离散元模型细观参数标定过程中计算量大的现状,以堆石料室内三轴排水剪切试验为对象,采用正交试验与等值线法相结合的方法,在优化细观参数取值范围和分析宏观响应对细观参数敏感性基础上快速确定了堆石料细观参数。结果表明,多次正交试验可以较快的缩小细观参数取值范围;综合利用正交试验和等值线法的优势能快速标定堆石料离散元模型的细观参数。该方法也为其它材料离散元模型标定细观参数提供了新的手段和思路。Abstract: In order to solve the problem of large amount of calculation in calibration of microscopic parameters for rockfill materials in discrete element model, taking the laboratory tri-axial tests on the rockfill materials as the object, the methods of orthogonal tests and contour lines are used to determine the microscopic parameters of the rockfill materials rapidly on the basis of narrowing the scope of microscopic parameters and analyzing the sensitivity of the macroscopic behaviors of the specimens to the microscopic parameters. The results show that the multiple orthogonal tests can quickly narrow the range of microscopic parameters. The advantages of the orthogonal test and contour method can be used to calibrate the microscopic parameters in discrete element model. This method also provides reference for other materials to calibrate microscopic parameters.
-
-
表 1 初次正交试验设计表
Table 1 Design of initial orthogonal tests
因素 取值范围 因素水平 1 2 3 4 μr 0.3~1.0 0.3 0.5 0.7 1.0 μ 0.3~1.0 0.3 0.5 0.7 1.0 E* /100 MPa1.0~10.0 1.0 4.0 7.0 10 kr 1.0~2.5 1.0 1.5 2 2.5 表 2 初次正交试验方案及宏观指标结果
Table 2 Schemes of initial orthogonal tests of micro-parameters and results of macroscopic indexes
方案 细观参数(自变量) 宏观指标(因变量) μr μ E* /100 MPakr E50 /100 MPaSp /MPaεvmax /%ψ /(°)数值模拟 1 0.3 0.3 1.0 1.0 0.476 1.779 2.672 9.098 2 0.3 0.5 4.0 1.5 1.391 2.897 1.164 14.142 3 0.3 0.7 7.0 2.0 2.106 3.559 0.749 18.761 4 0.3 1.0 10 2.5 2.691 4.219 0.540 22.030 5 0.5 0.3 7.0 2.5 1.489 2.030 0.608 6.629 6 0.5 0.5 10 2.0 2.589 3.562 0.553 15.871 7 0.5 0.7 1.0 1.5 0.493 3.844 4.428 16.315 8 0.5 1.0 4.0 1.0 1.833 5.928 1.896 21.954 9 0.7 0.3 10 1.5 2.010 2.204 0.487 7.630 10 0.7 0.5 7.0 1.0 2.413 4.067 0.889 16.238 11 0.7 0.7 4.0 2.5 1.242 4.425 1.290 19.828 12 0.7 1.0 1.0 2.0 0.422 4.488 4.629 16.151 13 1.0 0.3 4.0 2.0 1.064 2.066 0.975 9.015 14 1.0 0.5 1.0 2.5 0.376 2.723 3.211 12.711 15 1.0 0.7 10 1.0 3.589 6.275 0.824 22.760 16 1.0 1.0 7.0 1.5 2.536 7.487 1.147 28.529 室内试验 — — — — — 1.625 3.1926 0.912 2.031 表 3 初次正交试验极差分析结果
Table 3 Range analysis results of initial orthogonal tests
宏观指标 因素 μr μ E* /100 MPakr E50 /100 MPak1 1.666 1.260 0.442 2.078 k2 1.601 1.692 1.383 1.608 k3 1.522 1.857 2.136 1.545 k4 1.891 1.870 2.720 1.449 极差R 0.369 0.610 2.278 0.629 Sp /MPak1 3.114 2.020 3.209 4.512 k2 3.841 3.312 3.829 4.108 k3 3.796 4.526 4.286 3.349 k4 4.638 5.530 4.065 3.419 极差R 1.524 3.510 1.077 1.163 εvmax /%k1 1.281 1.186 3.735 1.412 k2 1.871 1.454 1.331 1.807 k3 1.824 1.823 0.848 1.727 k4 1.539 2.053 0.601 1.570 极差R 0.590 0.867 3.134 0.395 ψ /(°)k1 16.008 8.093 13.569 17.513 k2 15.192 14.741 16.235 16.654 k3 14.962 19.416 17.539 14.949 k4 18.254 22.166 17.073 15.299 极差R 3.292 14.073 3.970 2.564 表 4 室内试验宏观指标值及初次正交试验结果优方案
Table 4 Values of macro-indexes and optimal combination of micro-parameters
宏观指标 初次正交试验细观参数组合 E50/100 MPa μr=0.3 μ=0.5 E*=400 MPakr=1.5 Sp/MPa μr=0.3 μ=0.5 E*=100MPakr=2.0 εvmax /%μr=0.3 μ=0.3 E*=700 MPakr=1.0 ψ /(°)μr=0.7 μ=0.3 E*=100 MPakr=2.0 表 5 细观参数范围优化结果
Table 5 Results of micro-parameters range
细观参数 初始范围 第一次优化 第二次优化 μr 0.3~1.0 0.3~0.7 0.3~0.7 μ 0.3~1.0 0.3~0.5 0.3~0.5 E* /100 MPa1.0~10.0 1.0~7.0 2.5~7.0 kr 1.0~2.5 1.0~2.0 1.0~2.0 表 6 第二次正交试验方案及结果
Table 6 Schemes of micro-parameters and results of macroscopic indexes in second orthogonal tests
方案 细观参数(自变量) 宏观指标(因变量) μr μ E* /100 MPakr E50 /100 MPaSP /MPaεvmax /%ψ /(°)1 0.30 0.30 1.00 1.00 0.354 1.779 2.672 9.098 2 0.30 0.35 2.50 1.25 0.744 2.147 1.498 10.127 3 0.30 0.40 4.00 1.50 1.117 2.439 1.070 10.241 4 0.30 0.45 5.50 1.75 1.466 2.702 0.841 12.362 5 0.30 0.50 7.00 2.00 1.791 2.910 0.692 14.338 6 0.40 0.30 2.50 1.50 0.658 1.945 1.411 8.587 7 0.40 0.35 4.00 1.75 1.009 2.300 1.034 8.744 8 0.40 0.40 5.50 2.00 1.347 2.644 0.825 10.983 9 0.40 0.45 7.00 1.00 1.984 3.135 0.776 13.609 10 0.40 0.50 1.00 1.25 0.434 2.933 3.714 13.212 11 0.50 0.30 4.00 2.00 0.901 1.997 0.970 9.272 12 0.50 0.35 5.50 1.00 1.409 2.547 0.857 9.205 13 0.50 0.40 7.00 1.25 1.787 2.935 0.738 11.786 14 0.50 0.45 1.00 1.50 0.402 2.689 3.418 12.588 15 0.50 0.50 2.50 1.75 0.806 3.253 1.804 15.025 16 0.60 0.30 5.50 1.25 1.245 2.131 0.794 9.845 17 0.60 0.35 7.00 1.50 1.593 2.594 0.682 10.329 18 0.60 0.40 1.00 1.75 0.370 2.374 3.103 10.133 19 0.60 0.45 2.50 2.00 0.749 2.967 1.676 12.623 20 0.60 0.50 4.00 1.00 1.321 3.783 1.402 16.838 21 0.70 0.30 7.00 1.75 1.426 2.136 0.638 7.004 22 0.70 0.35 1.00 2.00 0.340 2.043 2.795 10.135 23 0.70 0.40 2.50 1.00 0.808 2.934 1.767 6.006 24 0.70 0.45 4.00 1.25 1.202 3.396 1.275 13.891 25 0.70 0.50 5.50 1.50 1.560 3.811 1.008 16.327 表 7 细观参数标定结果
Table 7 The results of micro-parameters after calibration
细观参数 E* /MPakr μr μ 标定值 657.7 1.376 0.6717 0.4177 -
[1] 周伟, 常晓林, 马刚. 高堆石坝变形宏细观机制与数值模拟[M]. 北京: 科学出版社, 2017. ZHOU Wei, CHANG Xiao-lin, Ma Gang. Macroscopic and Microscopic Deformation Mechanism and Numerical Simulation of High Rockfill Dam[M]. Beijing: Science Press, 2017. (in Chinese)
[2] 蒋明镜. 现代土力学研究的新视野-宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm JIANG Ming-jin. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
[3] COETZEE C J, ELS D N J. Calibration of granular material parameters for DEM modelling and numerical verification by blade-granular material interaction[J]. Journal of Terrame- chanics, 2009, 46(1): 15-26. doi: 10.1016/j.jterra.2008.12.004
[4] 周伟, 谢婷蜓, 马刚, 等. 基于颗粒流程序的真三轴应力状态下堆石体的变形和强度特性研究[J]. 岩土力学, 2012, 33(10): 3006-3012, 3080. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210023.htm ZHOU Wei, XIE Ting-ting, MA Gang, et al. Stress and deformation analysis of rockfill in true triaxial stress conditions based on PFC[J]. Rock and Soil Mechanics, 2012, 33(10): 3006-3012, 3080. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210023.htm
[5] 邵磊, 迟世春, 张勇, 等. 基于颗粒流的堆石料三轴剪切试验研究[J]. 岩土力学, 2013, 34(3): 711-720. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303017.htm SHAO Lei, CHI Shi-chun, ZHANG Yong, et al. Study of triaxial shear tests for rockfill based on particle flow code[J]. Rock and Soil Mechanics, 2013, 34(3): 711-720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303017.htm
[6] 王永明, 朱晟, 任金明, 等. 筑坝粗粒料力学特性的缩尺效应研究[J]. 岩土力学, 2013, 34(6): 1799-1806, 1823. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306041.htm WANG Yong-ming, ZHU Sheng, REN Jin-ming, et al. Research on scale effect of coarse-grained materials[J]. Rock and Soil Mechanics, 2013, 34(6): 1799-1806, 1823. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306041.htm
[7] 马幸, 周伟, 马刚, 等. 最小粒径截距对颗粒体数值模拟的影响[J]. 中南大学学报(自然科学版), 2016, 47(1): 166-175. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201601024.htm MA Xing, ZHOU Wei, MA Gang, et al. Effect of minimum particle size on assembly in numerical simulation[J]. Journal of Central South University (Science and Technology), 2016, 47(1): 166-175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201601024.htm
[8] 李鹏鹏. 考虑颗粒形状的堆石体缩尺效应研究[D]. 武汉: 武汉大学, 2017. LI Peng-peng. Scale Effects of Rockfill Materials Considering Particle Shape[D]. Wuhan: Wuhan University, 2017. (in Chinese)
[9] 张宜, 周伟, 马刚, 等. 细颗粒截断粒径对堆石体力学特性影响的数值模拟[J]. 武汉大学学报(工学版), 2017, 50(3): 332-339. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201703003.htm ZHANG Yi, ZHOU Wei, MA Gang, et al. Effect of minimum particle size on mechanical properties of rockhill materials by numerical simulation[J]. Engineering Journal of Wuhan University, 2017, 50(3): 332-339. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201703003.htm
[10] 邵晓泉, 迟世春, 陶勇. 堆石料剪切强度与变形的尺寸效应模拟[J]. 岩土工程学报, 2018, 40(10): 1766-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810003.htm SHAO Xiao-quan, CHI Shi-chun, TAO Yong. Numerical simulation of size effect on shear strength and deformation behavior of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1766-1772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810003.htm
[11] HORN E. The Calibration of Material Properties for Use in Discrete Element Models[D]. Stellenbosch: Stellenbosch University, 2012.
[12] 李守巨, 于申, 孙振祥, 等. 基于神经网络的堆石料本构模型参数反演[J]. 计算机工程, 2014, 40(6): 267-271. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201406058.htm LI Shou-ju, YU Shen, SUN Zhen-xiang, et al. Parameter inversion of constitutive model for rockfill materials based on neural network[J]. Computer Engineering, 2014, 40(6): 267-271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201406058.htm
[13] 马刚. 堆石体的连续-离散耦合分析方法与宏细观力学特性[D]. 武汉: 武汉大学, 2014. MA Gang. The Combined Finite-Discrete Element Method of Rockfill Materials and Its Macro- and Micro-Mechanical Behaviors[D]. Wuhan: Wuhan University, 2014. (in Chinese)
[14] LI S J, LI D, CAO L, et al. Parameter estimation approach for particle flow model of rockfill materials using response surface method[J]. International Journal of Computational Materials Science and Engineering, 2015, 04(1): 1550003.
[15] 李守巨, 李德, 于申. 基于宏观实验数据的堆石料细观本构模型参数反演[J]. 山东科技大学学报(自然科学版), 2015, 34(5): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201505004.htm LI Shou-ju, LI De, YU Shen. Meso-parameter inversion of constitutive model for rockfill materials based on macro experimental data[J]. Journal of Shandong University of Science and Technology, 2015, 34(5): 20-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201505004.htm
[16] 杨杰, 马春辉, 程琳, 等. 基于QGA-SVM的堆石料离散元细观参数标定模型[J]. 水利水电科技进展, 2018, 38(5): 53-58, 75. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201805011.htm YANG Jie, MA Chun-hui, CHENG Lin, et al. Mesoscopic parameter calibration model of discrete elements in rockfill material based on QGA-SVM[J]. Advances in Science and Technology of Water Resources, 2018, 38(5): 53-58, 75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201805011.htm
[17] 陈兵, 于沭, 温彦锋, 等. 宽级配粗粒土数值试验微观参数的敏感性分析[J]. 水利学报, 2015, 46(增刊1): 315-320. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1058.htm CHEN Bing, YU Shu, WEN Yan-feng, et al. Sensitivity analysis of micro-parameters on numerical experiments of wide grading coarse-grained soils[J]. Journal of Hydraulic Engineering, 2015, 46(S1): 315-320. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1058.htm
[18] CHENG K, WANG Y, YANG Q, et al. Determination of microscopic parameters of quartz sand through tri-axial test using the discrete element method[J]. Computers and Geotechnics, 2017, 92: 22-40.
[19] WENSRICH C M, KATTERFELD A. Rolling friction as a technique for modelling particle shape in DEM[J]. Powder Technology, 2012, 217: 409-417.
[20] AI J, CHEN J F, ROTTER J M, et al. Assessment of rolling resistance models in discrete element simulations[J]. Powder Technology, 2011, 206(3): 269-282.
[21] 邵磊. 基于裂缝扩展细观模拟的堆石料流变特性研究[D]. 大连: 大连理工大学, 2013. SHAO Lei. Study on Rheological Property of Rockfill by Meso-Mechanics Simulation Based on Sub-Critical Crack Expansion Theory[D]. Dalian: Dalian University of Technology, 2013. (in Chinese)
[22] ROUX J N, COMBE G. How granular materials deform in quasistatic conditions[J]. AIP Conference Proceedings, 2010, 1227(1): 260-270.
[23] 孔宪京, 宁凡伟, 刘京茂, 等. 基于超大型三轴仪的堆石料缩尺效应研究[J]. 岩土工程学报, 2019, 41(2): 255-261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902003.htm KONG Xian-jing, NING Fan-wei, LIU Jing-mao, et al. Scale effect of rockfill materials using super-large triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 255-261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902003.htm
[24] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004. LI Guang-xin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
[25] 蒋明镜, 王富周, 朱合华. 单粒组密砂剪切带的直剪试验离散元数值分析[J]. 岩土力学, 2010, 31(1): 253-257, 298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001044.htm JIANG Ming-jing, WANG Fu-zhou, ZHU He-hua. Shear band formation in ideal dense sand in direct shear test by discrete element analysis[J]. Rock and Soil Mechanics, 2010, 31(01): 253-257, 298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001044.htm
[26] 李云雁, 胡传荣. 试验设计与数据处理[M]. 北京: 化学工业出版社, 2008. LI Yun-yan, HU Chuan-rong. Experiment Design and Data Processing[M]. Beijing: Chemical Industry Press, 2008. (in Chinese)
[27] 颜敬, 曾亚武, 高睿, 等. 无黏结材料颗粒流模型的宏细观参数关系研究[J]. 长江科学院院报, 2012, 29(5): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201205011.htm YAN Jing, ZENG Ya-wu, GAO Rui, et al. Relationship between macroscopic and mesoscopic parameters in particle flow model of unbonded material[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(5): 45-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201205011.htm
[28] 邓树新, 郑永来, 冯利坡, 等. 试验设计法在硬岩PFC3D模型细观参数标定中的应用[J]. 岩土工程学报, 2019, 41(4): 655-664. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904010.htm DENG Shu-xin, ZHENG Yong-lai, FENG Li-po, et al. Application of design of experiments in microscopic parameter calibration for hard rocks of PFC3D model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 655-664. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904010.htm
-
期刊类型引用(11)
1. 蔺云宏,郝云龙,李明宇,田帅,常瑞成,刘新新. 基坑开挖引起下卧地铁盾构隧道变形的统计与预测方法研究. 河南科学. 2025(03): 337-346 . 百度学术
2. 张毅. 软弱地层下的基坑支护方案比选. 山西建筑. 2024(17): 97-100 . 百度学术
3. 王伟,邓松峰. 深厚软土区邻近地铁深基坑工程关键技术研究. 江苏建筑. 2024(05): 120-126 . 百度学术
4. 刘朝阳,蒋凯,梁禹. 基于Kerr地基模型的覆土荷载引起既有装配式地铁车站沉降分析. 现代隧道技术. 2024(05): 71-78 . 百度学术
5. 贺旭. 软弱地层基坑开挖支护方案比选研究. 铁道建筑技术. 2023(05): 100-104+125 . 百度学术
6. 张继新. 浅埋扩挖隧道变形处理技术分析. 交通世界. 2023(15): 138-140 . 百度学术
7. 邓彬,张磊,郑鹏鹏,陈保国,邹顺清. 深基坑开挖与内支撑调节对邻近沉井影响规律试验研究. 建筑科学与工程学报. 2023(05): 174-182 . 百度学术
8. 马少俊,王乔坎,苏凤阳,徐建章,郑伟,陈思源. 邻地铁盾构隧道超长基坑支护技术——以杭州大会展中心基坑工程为例. 建筑科学. 2022(05): 179-186 . 百度学术
9. 王丽萍. 水平间距对涉水隧道土体变形影响的模拟分析. 黑龙江水利科技. 2022(08): 74-76+108 . 百度学术
10. 冯文刚. 涉水隧道开挖对土体沉降影响分析. 黑龙江水利科技. 2022(08): 89-92 . 百度学术
11. 祖华. 城市地铁隧道开挖及变形控制的数值模拟研究. 山西建筑. 2022(21): 135-137 . 百度学术
其他类型引用(2)