Variable cross-sectional pore model to describe hydraulic conductivity and water retention behaviors of geotechnical materials
-
摘要: 为研究孔隙变截面特征对岩土介质渗透及持水特性的影响,先构建了圆柱形孔喉-大孔隙联合体组成的变截面孔隙模型。其次,假定孔径分布服从分形分布,基于构建的变截面孔隙模型推得岩土介质的饱和渗透系数函数、相对渗透系数函数及滞回持水曲线的理论表达式。最后,利用已有文献中4种砂岩、8种土的饱和-非饱和渗透试验以及3种土的减、增湿持水试验(含一种黏土的补充持水试验)结果分别验证了理论表达式在表征饱和渗透率与孔隙率关系、相对渗透系数与有效饱和度关系以及滞回持水特性时的有效性,通过计算饱和渗透率及相对渗透系数的预测值与其实测值之间的均方根偏差,发现理论表达式在描述4种砂岩和8种土的饱和-非饱和渗透特性时优于Kozeny-Carman公式和Assouline模型。Abstract: To investigate the contribution of their non-uniform cross-section to hydraulic conductivity and water retention behaviours for geotechnical materials, the pores can be simplified as variable cross-sectional assembly of cylindrical macro-pores with pore throats. In addition, this variable cross-sectional pore model can provide theoretical expressions for both the saturated-relative hydraulic conductivity functions and the water retention curves based on a fractal pore size distribution. Finally, these theoretical expressions are validated against both the saturated-unsaturated permeability data for four sandstones and eight soils and the hysteretic water retention data (including the supplementary water retention tests on a clay) for three soils in the previous literatures. The results of RMSD between the predicted and the measured values of saturated permeability and relative hydraulic conductivity show that these new expressions are superior to Kozeny-Carman equation and Assouline model for describing the evolution of saturated permeability with porosity and the relation of relative hydraulic conductivity with effective degree of saturation.
-
-
-
[1] CHAPUIS R P, AUBERTIN M. On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils[J]. Canadian Geotechnical Journal, 2003, 40(3): 616-628. doi: 10.1139/t03-013
[2] TAIBI S, BICALHO K V, SAYAD-GAIDI C, et al. Measurements of unsaturated hydraulic conductivity functions of two fine-grained materials[J]. Soils and Foundations, 2009, 49(2): 181-191. doi: 10.3208/sandf.49.181
[3] MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. doi: 10.1029/WR012i003p00513
[4] ASSOULINE S. A model for soil relative hydraulic conductivity based on the water retention characteristic curve[J]. Water Resources Research, 2001, 37(2): 265-271. doi: 10.1029/2000WR900254
[5] ASSOULINE S, TESSIER D, BRUAND A. A conceptual model of the soil water retention curve[J]. Water Resources Research, 1998, 34(2): 223-231. doi: 10.1029/97WR03039
[6] HU R, CHEN Y F, LIU H H, et al. A relative permeability model for deformable soils and its impact on coupled unsaturated flow and elasto-plastic deformation processes[J]. Science China-Technological sciences, 2015, 58(11): 1971-1982. doi: 10.1007/s11431-015-5948-3
[7] YU B M, LI J H, LI Z H, et al. Permeabilities of unsaturated fractal porous media[J]. International Journal of Multiphase Flow, 2003, 29(10): 1625-1642. doi: 10.1016/S0301-9322(03)00140-X
[8] 徐永福, 黄寅春. 分形理论在研究非饱和土力学性质中的应用[J]. 岩土工程学报, 2006, 28(5): 635-638. doi: 10.3321/j.issn:1000-4548.2006.05.017 XU Yong-fu, HUANG Yin-chun. Fractal-textured soils and their unsaturated mechanical properties[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 635-638. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.05.017
[9] DOUSSAN C, RUY S. Prediction of unsaturated soil hydraulic conductivity with electrical conductivity[J]. Water Resources Research, 2009, 45(10): W10408.
[10] TOKUNAGA T K. Hydraulic properties of adsorbed water films in unsaturated porous media[J]. Water Resources Research, 2009, 45(6): W06415.
[11] JERAULD G R, SALTER S J. The effect of pore-structure on hysteresis in relative permeability and capillary pressure: pore-level modeling[J]. Transport in Porous Media, 1990, 5(2): 103-151. doi: 10.1007/BF00144600
[12] NG C W W, PANG Y W. Experimental investigations of the soil-water characteristics of a volcanic soil[J]. Canadian Geotechnical Journal, 2000, 37(6): 1252-1264. doi: 10.1139/t00-056
[13] FENG M, FREDLUND D G. Hysteretic influence associated with thermal conductivity sensor measurements[C]//Proceedings of the 52nd Canadian Geotechnical Conference, 1999, Regina: 651-657.
[14] MUALEM Y, BERIOZKIN A. General scaling rules of the hysteretic water retention function based on Mualem's domain theory[J]. European Journal of Soil Science, 2009, 60(4): 652-661. doi: 10.1111/j.1365-2389.2009.01130.x
[15] LIU Y, PARIANGE J Y, STEENHUIS T S. A soil water hysteresis model for fingered flow data[J]. Water Resources Research, 1995, 31(9): 2263-2266. doi: 10.1029/95WR01649
[16] WEI C F, DEWOOIKAR M M. Formulation of capillary hysteresis with internal state variables[J]. Water Resources Research, 2006, 42(7): W07405.
[17] ZHOU A N. A contact angle-dependent hysteresis model for soil-water retention behavior[J]. Computers and Geotechnics, 2013, 49(4): 36-42.
[18] BOUSFIELD D W, KARLES G. Penetration into three- dimensional complex porous structures[J]. Journal of Colloid and Interface Science, 2004, 270(2): 396-405. doi: 10.1016/j.jcis.2003.10.017
[19] YU B M, LI J H. Some fractal characters of porous media[J]. Fractals, 2001, 9(3): 365-372. doi: 10.1142/S0218348X01000804
[20] CARSEL R F, PARRISH R S. Developing joint probability distributions of soil water retention characteristics[J]. Water Resources Research, 1988, 24(5): 755-769. doi: 10.1029/WR024i005p00755
[21] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
[22] CHILINDAR G V. Relationship between porosity, permeability and grain size distribution of sands and sandstones[C]//Proceedings of Deltaic and Shallow Marine Deposits, 1964, New York: 71-75.
[23] LUFFEL D L, HOWARD W E, HUNT E R. Travis Peak core permeability and porosity relationships at reservoir stress[J]. SPE Formation Evalaution, 1991, 16(3): 310-318.
[24] HIRST J P P, DAVIS N, PALMER A F, et al. The tight gas challenge: appraisal results from the Devonian of Algeria[J]. Petroleum Geoscience, 2001, 7(1): 13-21. doi: 10.1144/petgeo.7.1.13
[25] MUALEM Y. A Catalogue of the Hydraulic Properties of Unsaturated Soil[R]. Haifa: Technion-Israel Institute of Technology, 1974.
[26] LERMAN P M. Fitting segmented regression models by grid search[J]. Journal of the Royal Statistical Society Series C: Applied Statistics, 1980, 29(1): 77-84.
[27] PHAM H Q, FREDLUND D G, BARBOUR S L. A practical model for the soil-water characteristic curve for soils with negligible volume change[J]. Géotechnique, 2003, 53(2): 293-298. doi: 10.1680/geot.2003.53.2.293
[28] LINDQUIST W B, VENKATARANGAN A, DUNSMUIR J, et al. Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones[J]. Journal of Geophysical Research, 2000, 105(B9): 21509-21527. doi: 10.1029/2000JB900208
[29] DONG H, BLUNT M J. Pore-network extraction from micro- computerized-tomography images[J]. Physical Review E, 2009, 80(3): 1-11.
[30] KROHN C E, THOMPSON A H. Fractal sandstone pores: automated measurements using scanning-electron-microscope images[J]. Physical Review B, 1986, 33(9): 6366-6374. doi: 10.1103/PhysRevB.33.6366
[31] SMIDT J M, MONRO D M. Fractal modeling applied to reservoir characterization and flow simulation[J]. Fractals, 1998, 6(4): 401-408. doi: 10.1142/S0218348X98000444