• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

TJ-M1模拟火壤承载特性的研究

蒋明镜, 吕雷, 李立青, 黄伟

蒋明镜, 吕雷, 李立青, 黄伟. TJ-M1模拟火壤承载特性的研究[J]. 岩土工程学报, 2020, 42(10): 1783-1789. DOI: 10.11779/CJGE202010002
引用本文: 蒋明镜, 吕雷, 李立青, 黄伟. TJ-M1模拟火壤承载特性的研究[J]. 岩土工程学报, 2020, 42(10): 1783-1789. DOI: 10.11779/CJGE202010002
JIANG Ming-jing, LÜ Lei, LI Li-qing, HUANG Wei. Bearing properties of TJ-M1 Mars soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1783-1789. DOI: 10.11779/CJGE202010002
Citation: JIANG Ming-jing, LÜ Lei, LI Li-qing, HUANG Wei. Bearing properties of TJ-M1 Mars soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1783-1789. DOI: 10.11779/CJGE202010002

TJ-M1模拟火壤承载特性的研究  English Version

基金项目: 

国家自然科学基金重大项目 51890911

国家自然科学基金重点项目 51639008

详细信息
    作者简介:

    蒋明镜(1965—),男,教授,博士生导师,主要从事天然结构性黏土、砂土、非饱和土、太空土和深海能源土宏微观试验、本构模型和数值分析研究。E-mail:mingjing.jiang@tju.edu.cn

  • 中图分类号: TU470

Bearing properties of TJ-M1 Mars soil simulant

  • 摘要: 火星土壤(火壤)的研究是火星表面探测活动迈出的第一步,也是火星表面探测活动的主要研究对象之一。模拟火壤的平板荷载试验可用于了解真实火壤的工程性质,为火星探测器的安全着陆提供参考。采用自行研制的TJ-M1模拟火壤作为试验基材,通过静力触探和静载荷原位试验的分析对比,结合已有的静力触探与静载荷试验的经验公式,研究探讨适合火壤静承载力的经验公式。首先,搭建尺寸为6 m×6 m×1.25 m(长×宽×高)着陆试验床,分5层铺设至设计标高,而后在其表面对称布置8个静力触探试验测点和2个静载荷试验测点进行测试,最后基于太沙基提出的承载力修正公式及已有的11种适用于中密实砂土的经验公式对模拟火壤承载特性的预测进行研究探讨。结果表明:太沙基提出的修正地基承载力公式的计算结果明显偏小,而经验公式(唐贤强)[R]=80Ps+31.8可近似计算TJ-M1模拟火壤的地基承载力。
    Abstract: The mechanical and engineering behaviors of Mars soils play an important role in Mars exploration, which is one of the main objects in Mars exploration. The plate loading tests (PLT) on Mars soil simulants can be used to investigate the engineering properties of real Mars soils, which can serve for the safe loading of Mars probe. For this aim, the TJ-M1 Mars soil simulant is developed, on which a series of cone penetration tests (CPT) and plate loading tests are carried out. The experimental data are further analyzed with the existing empirical formula which relate the data of cone penetration tests and plate loading tests on sands in order to choose a suitable empirical formulas for Mars soils. Firstly, a 6 m×6 m×1.25 m (length × width × height) testbed is constructed, and paved in five layers. Then 8 cone penetration tests and 2 plate load tests are performed symmetrically on this testbed. Finally, the bearing capacity data are compared with those predicted by the Terzaghi classical correction formula and 11 empirical formulas relating CPT and PLT results for medium-dense sand. The results show that the bearing capacity from the Terzaghi classical correction formula is obviously smaller than the experimental value, while the empirical formula ([R]=80Ps+31.8) can be used to predict the bearing capacity of Mars soils from CPT data approximately.
  • 同济大学吴晓峰老师指导现场采样及奚邦禄博士参与部分现场试验,天津大学石安宁博士及尹福顺硕士参与现场模拟火壤试验场地建设工作,沈振义、庞红星、李双宝、张仕伟等研究生对试验工作给予了支持与帮助,北京机电空间研究所隋毅、黎光宇及其他现场工作人员在试验中给予了协助,在此一并表示由衷感谢!
  • 图  1   着陆试验床布置图

    Figure  1.   Landing testbed

    图  2   现场静载荷试验照片

    Figure  2.   Photos of plate loading tests

    图  3   平板静载荷P-S曲线

    Figure  3.   P-S curves of TJ-M1 Mars soil simulant obtained from plate loading tests

    图  4   测点1#、2#、7#、8#静力触探试验Ps-h曲线

    Figure  4.   Ps-h curves of cone penetration tests (points No. 1, 2, 7 and 8)

    图  5   测点3#、4#、5#、6#静力触探试验Ps-h曲线

    Figure  5.   Ps-h curves of cone penetration tests (points No. 3, 4, 5 and 6)

    表  1   原位火星土壤物理和力学特性

    Table  1   Physical and mechanical behaviors of in-situ Mars soils

    探测点土壤类型密度ρ/(g·cm-3)黏聚力c/kPa内摩擦角φ/(°)
    Viking[2]细砂0.2~2.328~34
    细土1.60.1~120~40
    Pathfinder[5]砂土0.5326
    Spirit[6]5.233.5
    Opportunity[7]5.1333.5
    Curiosity[8]0.2~1.238
    下载: 导出CSV

    表  2   典型模拟火星土壤物理和力学特性

    Table  2   Physical and mechanical behaviors of typical Mars soil simulant

    模拟火壤类型或状态密度ρ/(g·cm-3)黏聚力c/kPa内摩擦角φ/(°)
    JSC M-1[9]0.02~0.871.9147
    MMS I[11]1.3840.8138
    MMS II[11]1.3411.9639
    Salten SKov I[12]1.2~1.62
    ES-1[13]低密度1.3329.48
    高密度3.932.32
    ES-2[13]低密度-0.2438.16
    高密度-0.8241.43
    ES-3[13]低密度0.2635.76
    高密度1.3734.31
    DLR-A[14]0.1824.8
    DLR-B[14]0.44117.8
    下载: 导出CSV

    表  3   TJ-M1模拟火壤物理力学性能参数的目标范围

    Table  3   Target ranges of physical and mechanical behaviors of TJ-M1 Mars soil simulant

    物理参数密度ρ/(g·cm-3)黏聚力c/kPa内摩擦角φ/(°)
    目标值1.35~1.600.24~135~40
    TJ-M1模拟火壤1.380.4537.1
    符合度/100%100100100
    下载: 导出CSV

    表  4   TJ-M1模拟火壤通过经验公式计算得到的承载力值

    Table  4   Bearing capacities of TJ-M1 Mars soil simulant from empirical formula

    公式编号测点
    #1#2#3#4#5#6#7#8
    (3)7761607687777172
    (4)8665648499867879
    (5)97908996102979495
    (6)14~199~129~1214~1817~2314~1912~1613~17
    (7)1812111722181516
    (8)3623223443353131
    (9)5737365570574950
    (10)514509509513517513512512
    (11)258231229255273257247248
    (12)88545285107887577
    (13)97504692119968183
    下载: 导出CSV

    表  5   经验公式(3)的误差分析

    Table  5   Differences between experimental data and predicted results of Eq. (3)

    测点编号误差/%测点编号误差/%
    #16#520
    #216#66
    #317#72
    #45#81
    下载: 导出CSV
  • [1] 耿言, 周继时, 李莎, 等. 中国首次火星探测任务[J]. 深空探测学报, 2018, 5(5): 399-405. doi: 10.15982/j.issn.2095-7777.2020.20200043

    GENG Yan, ZHOU Ji-shi, LI Sha, et, al. Review of first Mars exploration mission in China[J]. Journal of Deep Space Exploration, 2018, 5(5): 399-405. (in Chinese) doi: 10.15982/j.issn.2095-7777.2020.20200043

    [2]

    MOORE H J, CLOW G D, HUTTON RE. A summary of Viking sample-trench analyses for angles of internal friction and cohesions[J]. Journal of Geophysical Research Atmospheres, 1982, 87(B12): 10043-10050. doi: 10.1029/JB087iB12p10043

    [3]

    SHAW A, ARVIDSON R E, BONITZ R, et, al. Phoenix soil physical properties investigation[J]. Journal of Geophysical Research Planets, 2009, 114(E1): 1-19.

    [4] 季江徽, 黄秀敏. “洞察号”启程探索火星内部世界[J]. 科学通报, 2018, 63(26): 2678-2685. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201826003.htm

    JI Jiang-hui, HUANG Xiu-min. Insight probe set out to explore the inner world of Mars[J]. Science China Press, 2018, 63(26): 2678-2685. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201826003.htm

    [5]

    MOORE H J, BICKLER D B, CRISP J A, et, al. Soil-like deposits observed by Sojourner, the Pathfinder rover[J]. Journal of Geophysical Research, 1999, 104(E4): 8729-8746. doi: 10.1029/1998JE900005

    [6]

    ARVIDSON R E. Localization and physical properties experiments conducted by Spirit at Gusev Grater[J]. Science, 2004, 305(5685): 821-824. doi: 10.1126/science.1099922

    [7]

    ARVIDSON R E, ARVIDSON R C, BARTLETT P B, et, al. Localization and physical property experiments conducted by Opportunity at Meridiani Planum[J]. Science, 2005, 306(5702): 1730-1733.

    [8]

    GROTZINGER J P, JOY C, ASHWIN R, et, al. Mars Science laboratory mission and science investigation[J]. Space Science Reviews, 2012, 170(1/2/3/4): 5-56.

    [9]

    GROSS F B, SASHA B, CARLOS I, et al. JSC Mars-1 Martian regolith simulant particle charging experiments in a low pressure environment[J]. Journal of Electrostatics, 2001, 53(4): 257-266. doi: 10.1016/S0304-3886(01)00152-8

    [10]

    GROSS F B. JSC Mars-1 Martian regolith simulant particle-charging experiments in the presence of AC and DC corona fields[J]. Journal of Electrostatics, 2003, 58(S1/2): 147-156.

    [11]

    PETERS G H, WILLIAM A, GREGORY H, et, al. Mojave Mars simulant-characterization of a new geologic Mars analog[J]. Icarus, 2008, 197(2): 470-479. doi: 10.1016/j.icarus.2008.05.004

    [12]

    NORNBERG P, GUNNLAUHSSON H P, MERRISON J P, et, al. Salten SkovI: a Martian magnetic dust analogue[J]. Planet Space Science, 2009, 57(5/6): 628-631.

    [13]

    BRUNSKILL C, PATEL N, GOUACHE T P, et, al. Characterisation of Martian soil simulants for the ExoMars rover testbed[J]. Journal of Terramechanics, 2011, 46(6): 419-438.

    [14]

    ELLERY A, PATEL N, RICHTER L, et, al. ExoMars rover chassis analysis and design[C]//Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, ESTEC, 2005, The Netherlands.

    [15] 刘汉生. PSI HX系列模拟火星土壤的制备和特性[C]//中国矿物岩石地球化学学会第17届学术年会论文摘要集2019, 杭州.

    LIU Han-sheng. PSI HX series the preparation and properties ofMars soil simulants[C]//Abstracts of the 17th annual meeting papers of Chinese Society for Mineralogy Petrology and Geochemistry, 2019, Hang Zhou. (in Chinese)

    [16] 党兆龙, 陈百超. 火星土壤物理力学特性分析[J]. 深空探测学报, 2016, 3(2): 129-133, 144. doi: 10.15982/j.issn.2095-7777.2016.02.005

    DANG Zhao-long, CHEN Bai-chao. Analysis on physical and mechanical properties of Martian soil[J]. Journal of Deep Space Exploration, 2016, 3(2): 129-133, 144. (in Chinese). doi: 10.15982/j.issn.2095-7777.2016.02.005

    [17]

    ZENG Xiao-jia, LI Xiong-yao, WANG Shi-jie, et, al. JMSS-1: a new Martian soil simulant[J]. Earth Planets & Space, 2015, 67(1): 72.

    [18] 刘兴杰, 苏波, 江磊, 等. 火星表面土壤力学性能参数研究[J]. 载人航天, 2016, 22(4): 459-465. doi: 10.3969/j.issn.1674-5825.2016.04.009

    LIU Xing-jie, SU Bo, JIANG Lei, et, al. Research on soil mechanical properties of Martian surface soil[J]. Manned Spaceflight, 2016, 22(4): 459-465. (in Chinese) doi: 10.3969/j.issn.1674-5825.2016.04.009

    [19] 蒋明镜, 戴永生, 张熇, 等. TJ-1模拟月壤承载特性的现场试验研究[J]. 岩土力学, 2013, 34(6): 1529-1535. doi: 10.16285/j.rsm.2013.06.001

    JIANG Ming--jing, Dai Yong-sheng, ZHANG He, et, al. Field experimental research on bearing propertiesof TJ-1 lunar soil simulant[J]. Rock and Soil Mechanic, 2013, 34(6): 1529-1535. (in Chinese) doi: 10.16285/j.rsm.2013.06.001

    [20]

    JIANG Ming-jing, XI Bang-lu, BLASIO F V, et al. Physical model tests of the bearing behavior of Tongji-1 Lunar soil simulant[J]. Journal of Aerospace Engineering, 2019, 32(2): 04018150. doi: 10.1061/(ASCE)AS.1943-5525.0000959

    [21] 梁允尚. 对静力触探地基承载力公式的分析研究[J]. 岩土工程学报, 1987, 9(4): 78-83. doi: 10.3321/j.issn:1000-4548.1987.04.009

    LIANG Yun-shang. The study of the bearing capacityformula of CPT[J]. Chinese Journal of Geotechnical Engineering. 1987, 9(4): 78-83. (in Chinese) doi: 10.3321/j.issn:1000-4548.1987.04.009

    [22] 王传焕. 用静力触探确定天然地基的极限承载力[J]. 铁道勘察, 2006(3): 34-36. doi: 10.3969/j.issn.1672-7479.2006.03.014

    WANG Chuan-huan. The determination of the ultimatebearing capacity of natural subsoil by cone penetrationtest[J]. Railway Investigation and Surveying, 2006(3): 34-36. (in Chinese) doi: 10.3969/j.issn.1672-7479.2006.03.014

    [23] 建筑地基基础设计规范:GB50007—2011[S]. 2011.

    Code for Design of Building Foundation: GB50007—2011[S]. 2011. (in Chinese)

    [24] 岩土工程勘察规范:GB50021-2009[S]. 2009.

    Code for Investigation of Geotechnical Engineering: GB50021-2009[S]. 2009. (in Chinese)

    [25]

    BOLTON M D, GUI M W. The Study of Relative Density and Boundary Effect for Cone Penetration Tests in Centrifuge Modeling[R]. Cambridge: Department of Engineering, Cambridge University, 1987.

    [26] 高大钊. 土力学与基础工程[M]. 北京: 中国建筑工业出版社, 1999.

    GAO Da-zhao. Soil Mechanics and Foundation Engineering[M]. Beijing: China Architecture & Building Press, 1999. (in Chinese)

    [27] 静力触探使用技术暂行规定(试用)[S]. 1980.

    Interim Provisions on Cone Penetration Technology (Trial)[S]. 1980. (in Chinese)

    [28] 唐贤强, 叶启民. 静力触探[M]. 北京: 中国铁道出版社, 1981: 7-9.

    TANG Xian-qiang, YE Qi-min. Cone Penetration Test[M]. Beijing: China Railway Press, 1981: 7-9. (in Chinese)

    [29] 工业与民用建筑工程地质勘察规范(试行): TJ21-77[S]. 1978.

    Code for Investigation of Civil Engineering Geological and Industrial (Trail): TJ21-77[S]. 1978. (in Chinese)

    [30] 《工程地质手册》编委会. 工程地质手册[M]. 4版.北京: 中国建筑工业出版社, 2006.

    《Geological Engineering Handbook》. Geological Engineering Handbook[M]. 4th ed. Beijing: China Architecture & Building Press, 2006. (in Chinese)

    [31]

    MEYERHOF G G. Penetration tests and bearing capacity of cohesionless soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1956, 82(SM1): 1-19.

    [32]

    ESLAAMIZAAD S, ROBERTSON P K. Cone penetration test to evaluate bearing capacity of foundations insands[C]//Proceedings of 49th Canadian Geotechnical Conference, 1996, NF: St: 429-438.

    [33] 李君韬. 基于旁压试验和静力触探估算地基承载力和压缩模量[D]. 北京: 中国地质大学, 2016.

    LI Jun-tao. Estimate Bearing Capacity and Compression Modulus of Soils by Pressuremeter Test and Cone Penetration Test[D]. Beijing: China University of Geosciences, 2016. (in Chinese)

  • 期刊类型引用(5)

    1. 田晓丹,姜晓桢,殷友超,石泽译. 基于土工膜透声特性的膜下垫层渗透变形声波特征试验研究. 水利水电科技进展. 2025(02): 31-37 . 百度学术
    2. 张宪雷,马仲阳,刘贺松. 高面膜堆石坝周边缝处PVC-P土工膜渗透机理. 岩土工程学报. 2024(11): 2333-2340 . 本站查看
    3. 张宪雷,马仲阳,吴云云. 面膜堆石坝不同品种土工膜力学特性. 岩土工程学报. 2023(05): 940-952 . 本站查看
    4. 徐国雷,张宪雷,马仲阳. 基于低场核磁共振技术面膜堆石坝中PVC膜渗透机理. 水电能源科学. 2022(12): 138-142 . 百度学术
    5. 黄耀英,谢同,费大伟,包腾飞,颜剑. 基于测压管实测水位的王甫洲水利工程复合土工膜工作性态反馈. 岩土工程学报. 2021(03): 564-571 . 本站查看

    其他类型引用(2)

图(5)  /  表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 7
出版历程
  • 收稿日期:  2019-12-10
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-09-30

目录

    /

    返回文章
    返回