• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

深中通道沉管隧道基槽回淤及边坡稳定性研究

曹影峰, 李兴高, 杨益

曹影峰, 李兴高, 杨益. 深中通道沉管隧道基槽回淤及边坡稳定性研究[J]. 岩土工程学报, 2020, 42(7): 1350-1358. DOI: 10.11779/CJGE202007019
引用本文: 曹影峰, 李兴高, 杨益. 深中通道沉管隧道基槽回淤及边坡稳定性研究[J]. 岩土工程学报, 2020, 42(7): 1350-1358. DOI: 10.11779/CJGE202007019
CAO Ying-feng, LI Xing-gao, YANG Yi. Back silting and slope stability of foundation trench in Shenzhen-Zhongshan immersed tunnel project[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1350-1358. DOI: 10.11779/CJGE202007019
Citation: CAO Ying-feng, LI Xing-gao, YANG Yi. Back silting and slope stability of foundation trench in Shenzhen-Zhongshan immersed tunnel project[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1350-1358. DOI: 10.11779/CJGE202007019

深中通道沉管隧道基槽回淤及边坡稳定性研究  English Version

详细信息
    作者简介:

    曹影峰(1993—),男,硕士,助理工程师,主要从事隧道工程的设计与科研工作。E-mail:yfcbjtu@163.com

    通讯作者:

    李兴高, E-mail:lxg_njtu@163.com

  • 中图分类号: TU43

Back silting and slope stability of foundation trench in Shenzhen-Zhongshan immersed tunnel project

  • 摘要: 跨海沉管隧道因其回淤强度大、晾槽时间长等特点,大量累积的回淤物威胁到沉管隧道的安全性。以深中通道沉管隧道为背景,总结试挖槽试验中回淤时空变化规律,研究回淤对基槽边坡稳定性的影响,深入分析坡面回淤的局部稳定性影响因素,结果表明:①回淤平面分布差异明显,槽底、北坡、南坡的回淤量依次减小;回淤竖向分布不均,从上至下呈递减趋势;回淤全年分布不均,洪季时回淤量大,进入枯季后回淤量减小。②基槽边坡稳定性主要受坡面回淤控制,放坡清淤可明显改善坡面回淤的稳定性;回淤厚度、清淤坡率、基槽坡高、边坡坡率增大及回淤抗剪强度降低均不利于坡面回淤的稳定性,清淤坡率应考虑各影响因素和所处季节综合确定。
    Abstract: Due to the large intensity of back silting and long-term idleness of foundation trench, back silting will threaten the safety of immersed tunnel. Relying on Shenzhen-Zhongshan immersed tunnel project, the change rules of back silting with time and space in the trial trench tests are summarized. A numerical model is established to study the influences of back silting on the stability of foundation trench slope. The factors affecting the local stability of back silting are deeply analyzed. The results show that: (1) The horizontal distribution of back silting is obviously different, that is, the amount of back silting at the bottom, north slope and south slope decreases in turn. The vertical distribution of back silting is uneven, and the thickness of back silting from top to bottom decreases. The amount of back silting varies greatly through out the year, large in flood season but small in dry season. (2) The stability of foundation trench slope is mainly controlled by the back silting, and the stability of back silting can be significantly improved by desilting with slope. The safety factor of back silting decreases with the increase of thickness of back silting, desilting gradient, slope height, slope gradient or the decrease of shear strength of back silting.
  • 图  1   隧道纵断面图

    Figure  1.   Longitudinal section of tunnel

    图  2   回淤色差图

    Figure  2.   Chromaticity difference diagram of back silting

    图  3   等深线对比图

    Figure  3.   Comparison of contours

    图  4   回淤物厚度及平均密度–时间曲线

    Figure  4.   Thicknesses and average density-time curves of back silting

    图  5   放坡清淤前后回淤分布对比

    Figure  5.   Comparison of back silting before and after desilting with slope

    图  6   计算模型示意图

    Figure  6.   Schematic diagram of computational model

    图  7   不同回淤厚度时基槽边坡的安全系数

    Figure  7.   Safety factors of slope with different thicknesses of back silting

    图  8   基槽边坡潜在滑动面

    Figure  8.   Potential slip surfaces of foundation trench slope

    图  9   不同失稳状态对应的安全系数

    Figure  9.   Safety factors in different instable states

    图  10   坡面回淤局部安全系数

    Figure  10.   Local safety factors of back silting

    图  11   不同坡高的基槽坡面回淤局部安全系数(边坡坡率1∶3)

    Figure  11.   Local safety factors of back silting with different slope heights (slope rate of 1∶3)

    图  12   不同坡高的基槽坡面回淤局部安全系数(边坡坡率1∶5)

    Figure  12.   Local safety factors of back silting with different slope heights (slope rate of 1∶5)

    图  13   不同坡高的基槽坡面回淤局部安全系数(边坡坡率1∶7)

    Figure  13.   Local safety factors of back silting with different slope heights (slope rate of 1∶7)

    图  14   抗剪强度不同时的回淤局部安全系数

    Figure  14.   Local safety factors of back silting with different shear strengths

    表  1   土体物理力学参数

    Table  1   Physical and mechanical parameters of soil

    土层名称饱和重度/(kN·m-3)弹性模量E/MPa泊松比固结快剪
    c/kPaφ/(°)
    淤泥15.34.710.406.698.04
    粉砂20.025.200.308.0017.70
    回淤12.63.000.431.300.70
    下载: 导出CSV

    表  2   不同基槽边坡的回淤承载值

    Table  2   Load values of back silting for different slopes (m)

    坡高/m边坡坡率
    1∶31∶51∶7
    10>3>3>3
    20>3>3>3
    301.8>3>3
    下载: 导出CSV

    表  3   回淤放坡处理的坡率上限值

    Table  3   Upper limit values of desilting slope rate

    边坡坡率南边坡北边坡
    10 m20 m30 m10 m20 m30 m
    1∶31∶1.51∶1.51∶1.51∶21∶2.51∶3
    1∶51∶21∶21∶21∶21∶31∶4
    1∶71∶21∶21∶21∶21∶31∶4
    注:回淤放坡坡率与边坡坡率相等时,为将回淤物全部清除。
    下载: 导出CSV
  • [1] 吕勇刚. 港珠澳大桥沉管隧道工程[J]. 隧道建设(中英文), 2017, 37(9): 1193-1195. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201709024.htm

    LÜ Yong-gang. Immersed tunnel project of Hong Kong-Zhuhai-Macao bridge[J]. Tunnel Construstion, 2017, 37(9): 1193-1195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201709024.htm

    [2] 徐国平, 黄清飞. 深圳至中山跨江通道工程总体设计[J]. 隧道建设(中英文), 2018, 38(4): 627-637. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201804035.htm

    XU Guo-ping, HUANG Qing-fei. General design of Shenzhen-Zhongshan river-crossing link project[J]. Tunnel Construstion, 2018, 38(4): 627-637. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201804035.htm

    [3] 许超. 大连湾海底隧道项目PPP方案研究[D]. 大连: 大连理工大学, 2018.

    XU Chao. A Study on PPP Implementation of Dalian Cross-Sea Tunnel Project[D]. Dalian: Dalian University of Technology, 2018. (in Chinese)

    [4] 方华. 沉管隧道基槽边坡稳定性研究[D]. 北京: 北京交通大学, 2010.

    FANG Hua. A Study on Slope Stability of the Foundation Trench of Immersed Tube Tunnel[D]. Beijing: Beijing Jiaotong University, 2010. (in Chinese)

    [5] 杨华, 王汝凯, 韩西军, 等. 港珠澳大桥沉管隧道基槽泥沙回淤研究总述及创新实践[J]. 水道港口, 2018, 39(2): 125-132. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGK201802002.htm

    YANG Hua, WANG Ru-kai, HAN Xi-jun, et al. Research summary and innovative practice on back silting of foundation trench in the Hong Kong-Zhuhai-Macao immersed tunnel project[J]. Journal of Waterway and Harbor, 2018, 39(2): 125-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDGK201802002.htm

    [6] 贺少辉, 张弥, 王磊, 等. 高速铁路长江沉管隧道节段沉放对基槽边坡稳定坡率的影响研究[C]//海峡两岸隧道与地下工程学术与技术研讨会, 1999, 北京.

    HE Shao-hui, ZHANG Mi, WANG Lei, et al. Effect of immersed tunnel's sinking on slope stability of foundation trench slope in Yangtze River high speed railway project[C]//Cross-strait Academic and Technical Seminar on Tunnels and Underground Engineering, 1999, Beijing. (in Chinese)

    [7] 肖明清. 长江沉管隧道水下基槽边坡的稳定性与合理坡率[J]. 现代隧道技术, 2001, 38(1): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200101010.htm

    XIAO Ming-qing. Stability and suitable slope ratio of underwater foundation trench in Yangtze River immersed tunnel project[J]. Modern Tunnelling Technology, 2001, 38(1): 42-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200101010.htm

    [8] 周顺华, 刘建国, 李尧臣. 水下边坡稳定性分析[J]. 西南交通大学学报, 2002, 37(2): 180-185. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200202018.htm

    ZHOU Shun-hua, LIU Jian-guo, LI Yao-chen. Analysis of the stability of underwater slop[J]. Tunnel Construstion, 2002, 37(2): 180-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200202018.htm

    [9] 刘建国, 周顺华, 宫全美. 水下边坡稳定性计算模式的探讨[J]. 上海铁道大学学报, 2000(2): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SHTY200002002.htm

    LIU Jian-guo, ZHOU Shun-hua, GONG Quan-mei. Discussion on calculation model of underwater slope stability[J]. Journal of Shanghai Tiedao University, 2000(2): 35-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHTY200002002.htm

    [10] 喻卫华. 水下基槽边坡的稳定性分析[D]. 广州: 华南理工大学, 2010.

    YU Wei-hua. Analysis on Stability of Underwater Slope[D]. Guangzhou: South China University of Technology, 2010. (in Chinese)

    [11] 何波, 苏煜, 杨景鹏, 等. 深圳至中山跨江通道工程沉管隧道基槽回淤观测试验专题——现场回淤实测分析报告[R]. 广州: 中交广州航道局有限公司, 2017.

    HE Bo, SU Yu, YANG Jing-peng, et al. Observation Test of Back Silting in the Shenzhen-Zhongshan Immersed Tunnel Project: Analysis Report of Field Measurement[R]. Guangzhou: China Jiaotong Guangzhou Waterway Bureau Co., Ltd., 2017. (in Chinese)

    [12] 韩志远, 谢勇亮. 深圳至中山跨江通道工程沉管隧道基槽回淤观测试验专题——试挖槽水域现场勘测资料成果汇编[R]. 天津: 交通运输部天津水运工程科学研究院, 2017.

    HAN Zhi-yuan, XIE Yong-liang. Observation Test of Back Silting in the Shenzhen-Zhongshan Immersed Tunnel Project: Compilation of the Site Survey Materials in the Trial Trench Waters[R]. Tianjin: Tianjin Research Institute for Water Transport Engine, 2017. (in Chinese)

    [13] 金文良, 韩志远, 李怀远, 等. 深中通道沉管隧道试挖槽回淤特征研究[J]. 水道港口, 2019, 40(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGK201901002.htm

    JIN Wen-liang, HAN Zhi-yuan, LI Huai-yuan, et al. Back silting analysis of the trial dredged-trough for immersed tube tunnel of Shenzhen-Zhongshan Link[J]. Journal of Waterway and Harbor, 2019, 40(1): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDGK201901002.htm

    [14] 林枫, 陶履彬, 朱合华. 水下边坡稳定性分析研究[J]. 岩石力学与工程学报, 2003(增刊1): 2149-2153. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2003S1005.htm

    LIN Feng, TAO Lü-bin, ZHU He-hua. Research on stability of submerged slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2003(S1): 2149-2153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2003S1005.htm

    [15] 刘博. 波浪作用下海底斜坡稳定性的极限分析上限方法与数值分析[D]. 大连: 大连理工大学, 2014.

    LIU Bo. Upper Bound Approach of Limit Analysis and FE Numerical Analysis of Stability of Submarine Slope Considering the Wace-Induced Pressure[D]. Dalian: Dalian University of Technology, 2014. (in Chinese)

    [16] 王旭, 刘东升, 宋强辉, 等. 基于极限平衡法的边坡稳定性可靠度分析[J]. 地下空间与工程学报, 2016, 12(3): 839-844. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201603039.htm

    WANG Xu, LIU Dong-sheng, SONG Qiang-hui, et al. Slope Stability Reliability analysis based on limit equilibrium methods[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(3): 839-844. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201603039.htm

    [17]

    TSCHUCHNIGG F, SCHWEIGER H F, SLOAN S W. Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part II: Back analyses of a case history[J]. Computers & Geotechnics, 2015, 70: 178-189.

    [18]

    SHI L, SUN G. Improvement of the finite-element-based limit equilibrium method to include changes in groundwater: a case study of a deforming bank slope from the Three Gorges Reservoir[J]. Environmental Earth Sciences, 2018, 77(9): 333.

    [19] 种记鑫. 基于有限元极限平衡法的锚固边坡稳定性分析[J]. 防灾减灾学报, 2017, 33(4): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYJ201704007.htm

    CHONG Ji-xin. Stability analysis of anchored soil slope based on finite element limit equilibrium method[J]. Journal of Disaster Prevention and Reduction, 2017, 33(4): 32-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DDYJ201704007.htm

    [20] 杨辉. 边坡稳定分析的有限元极限平衡法原理及程序实现[D]. 北京: 北京交通大学, 2014.

    YANG Hui. The Theory and Programming Implementation of Limit Equilibrium Method Based on the Finite Element Stress Field[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)

    [21] 徐国平, 张尧禹, 肖西卫, 等. 深圳至中山跨江通道工程(岛隧工程)施工图设计——工程地质勘察报告[R]. 北京: 中交公路规划设计院有限公司, 2017.

    XU Guo-ping, ZHANG Yao-yu, XIAO Xi-wei, et al. Construction Design of Shenzhen-Zhongshan River-Crossing Passag (Island Tunnel Project): Engineering Geological Survey Report[R]. Beijing: CCCC Highway Consultants CO., Ltd., 2017. (in Chinese)

图(14)  /  表(3)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  32
  • PDF下载量:  480
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-19
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-06-30

目录

    /

    返回文章
    返回