Effect of soil-water characteristic curve on shear strength of unsaturated sandy soils
-
摘要: 因非饱和土的剪切试验设备成本比较高,通过间接手段估测非饱和土抗剪强度的方法日受欢迎,其中通过土–水特征曲线进行估测的方法最为普遍。通过修正传统毛细模型,结合概率统计学理论,为通过土–水特征曲线估测非饱和土抗剪强度的计算方法提供理论依据,并提出相关数学表达式。对比公式的估算值和现有文献的试验数据,发现估算值和试验数据基本吻合。此外,还发现很多文献中土–水特征曲线试验土样和非饱和土剪切试验土样并不在同一应力状态,如果忽略这样的应力状态差异,会增大估测的误差。因此,建议对传统张力仪或压力板试验的土–水特征曲线进行相关修正后再用以估测非饱和土抗剪强度。Abstract: The experimental measurements of the shear strength of unsaturated soils are uncommonly emloyed in the practical engineering because the unsaturated experimental measurements are time-consuming and costly. Instead, the shear strength of unsaturated soils is commonly estimated from the soil-water characteristic curve (SWCC). In this study, an improved capillary model and a new mathematical equation are proposed for the estimation of the shear strength of unsaturated soils from the SWCC. The proposed equation is verified by the experimental data from the published literatures. It is observed that the soil specimen prepared for the SWCC tests may not be in the same stress state as that prepared for the shearing tests. In other words, the measured SWCC from the conventional Tempe cell and pressure plate may not agree with that of the specimen in the shearing tests. As a result, errors may be introduced in the estimated results of the shear strength of unsaturated soils. Consequently, the SWCCs obtained from the conventional method should be corrected for the estimation of the shear strength of the unsaturated soils with a high confining pressure.
-
-
图 10 团聚体间孔隙和团聚体内孔隙[33]
Figure 10. Illustration of inter-aggregate and intra-aggregate pores
表 1 压实高岭土、风化花岗岩和印度Head Till土水特性曲线的拟合参数
Table 1 The SWCC fitting parameters for compacted kaolin, weathered granite and Indian Head Till
土样 围压/kPa F-X模型[21]参数 a/kPa n m Cr 压缩高岭土 100 83.40 3.76 0.74 1500 压缩高岭土 200 95.00 3.80 0.70 1500 压缩高岭土 300 101.00 3.80 0.65 1500 风化花岗岩 0 3.26 4.12 0.41 1500 风化花岗岩 100 7.67 2.60 0.53 1500 风化花岗岩 200 14.72 2.07 0.61 1500 风化花岗岩 300 23.85 1.89 0.65 1500 印度Head Till 预压25 34.10 0.80 0.57 3000 印度Head Till 预压100 71.40 0.66 0.54 3000 印度Head Till 预压200 125.20 0.81 0.45 3000 -
[1] FREDLUND D G, RAHARDJO H. Soil Mechanics for Unsaturated Soil[M]. New York: Wiley, 1993.
[2] FREDLUND D G, RAHARDJO H, FREDLUND M D. Unsaturated Soil Mechanics in Engineering Practice[M]. New York: Wiley, 2012.
[3] BISHOP A W. The principle of effective stress[J]. Teknisk Ukeblad, Norwegian Geotechnical Institute, 1959, 106(39): 859-863.
[4] BIOT M A. General theory for three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. doi: 10.1063/1.1712886
[5] JENNINGS J E B, BURLAND J B. Limitations to the use of effective stresses in partly saturated soils[J]. Géotechnique, 1962, 12(2): 125-144. doi: 10.1680/geot.1962.12.2.125
[6] FREDLUND D G, MORGENSTERN N R, WIDGER A, et al. Shear strength of unsaturated soils[J]. Can Geotech J, 1978, 15: 313-321 doi: 10.1139/t78-029
[7] FUNG Y C. Foundations of Solid Mechanics[M]. Englewood Cliffs: Prentice-Hall, 1965.
[8] FUNG Y C. A First Course in Continuum Mechanics[M]. 2nd ed. Englewood Cliffs: Prentice-Hall, 1977.
[9] 陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402002.htm CHEN Zheng-han. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402002.htm
[10] 陈正汉, 秦冰. 非饱和土的应力状态变量研究[J]. 岩土力学, 2012, 33(1): 1-11. doi: 10.3969/j.issn.1000-7598.2012.01.001 CHEN Zheng-han, QIN Bing. On stress state variables of unsaturated soils[J]. Rock and Soil Mechanics, 2012, 33(1): 1-11. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.01.001
[11] ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Estimation of unsaturated shear strength from soil-water characteristic curve[J]. Acta Geotechnica, 2019, 14(6): 1977-1990. doi: 10.1007/s11440-019-00785-y
[12] ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Role of pore-size distribution function on the water follow in soil[J]. Journal of Zhejiang University (Science A), 2019, 20(1): 10-20. doi: 10.1631/jzus.A1800347
[13] ZHAI Q, RAHARDJO H, SATYANAGA A, et al. A pore-size distribution function based method for estimation of hydraulic properties of sandy soils[J]. Engineering Geology, 2018, 246: 288-292. doi: 10.1016/j.enggeo.2018.09.031
[14] ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Estimation of air permeability from soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2019, 56(4): 505-513. doi: 10.1139/cgj-2017-0579
[15] ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Uncertainty in the estimation of hysteresis of soil-water characteristic curve[J]. Environmental Geotechnics, 2019, 6(4): 204-213. doi: 10.1680/jenge.17.00008
[16] ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Effect of bimodal soil-water characteristic curve on the estimation of permeability function[J]. Engineering Geology, 2017, 230: 142-151. doi: 10.1016/j.enggeo.2017.09.025
[17] ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Effects of residual suction and residual water content on the estimation of permeability[J]. Geoderma, 2017, 303: 165-177. doi: 10.1016/j.geoderma.2017.05.019
[18] ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Variability in unsaturated hydraulic properties of residual soil in Singapore[J]. Engineering Geology, 2016, 209: 21-29. doi: 10.1016/j.enggeo.2016.04.034
[19] ZHAI Q, RAHARDJO H. Estimation of permeability function from the Soil-Water Characteristic Curve[J]. Engineering Geology, 2015, 199: 148-156. doi: 10.1016/j.enggeo.2015.11.001
[20] DIAMOND S. Pore size distributions in clay[J]. Clays & Clay Minerals, 1970, 18: 7-23.
[21] FREDLUND D G, XING A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(3): 521-532.
[22] 陈正汉. 重塑非饱和黄土的变形、强度、屈服和水量变化特性[J]. 岩土工程学报, 1999, 21(1): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC901.016.htm CHEN Zheng-han. Deformation, strength, yield and moisture change of a remolded unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 82-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC901.016.htm
[23] 黄海, 陈正汉, 李刚. 非饱和土在P-S平面上的屈服轨迹及土–水性特征曲线的探讨[J]. 岩土力学, 2000, 21(4): 316-321. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200004002.htm HUANG Hai, CHEN Zheng-han, LI Gang. A study on yield locus of unsaturated soils on p-s plane and soil-water characteristic curve[J]. Rock and Soil Mechanics, 2000, 21(4): 316-321. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200004002.htm
[24] 方祥位, 陈正汉, 孙树国, 等. 剪切对非饱和土土水特征曲线影响的研究[J]. 岩土力学, 2004, 25(9): 1451-1454. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX20040900N.htm FANG Xiang-wei, CHEN Zheng-han, SUN Shu-guo, et al. A study on effect of shear on soil-water characteristic curve of an unsaturated soil[J]. Rock and Soil Mechanics, 2004, 25(9): 1451-1454. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX20040900N.htm
[25] 章峻豪, 陈正汉. 南水北调中线工程安阳段渠坡换填土广义土–水特征曲线的试验研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3987-3994. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2123.htm ZHANG Jun-hao, CHEN Zheng-han. Test research on generalized SWCC for the backfill soil of the canal slope in Anyang district of South-to-North Water Diversion Project[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3987-3994. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2123.htm
[26] MENDES J D, TOLL G. Influence of initial water content on the mechanical behavior of unsaturated sandy clay soil[J]. Int J Geomech, 2016, 16(6): D4016005. doi: 10.1061/(ASCE)GM.1943-5622.0000594
[27] WIJAYA M, LEONG E C. Modelling the effect of density on the unimodal soil-water characteristic curve[J]. Géotechnique, 2017, 67(7): 637-645.
[28] GAO Y, SUN D A, ZHU A C, et al. Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range[J]. Acta Geotechnica, 2019, 14: 417-428.
[29] MILINGTON R J, QUIRK J P. Permeability of porous media[J]. Nature, 1961, 183: 387-388.
[30] MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resour Res, 1976, 12(3): 513-522.
[31] TULLER M, OR D. Retention of water in soil and soil-water characteristic curve[J]. Encyclopedia of Soils in the Environment, 2004(4): 278-289.
[32] PLASTER E J. Soil Science and Management[M]. Clifton Park, NY: Delmar, 2009.
[33] PEPPER I L, GERBA C P, GENTRY T J, et al. Environmental Microbiology[M]. 2nd ed. Pittsburgh: Academic Press, 2009.
[34] THU T M, RAHARDJO H, LEONG E C, et al. Critical state behavior of a compacted silt specimen[J]. Soils and Foundations, 2007, 47(4): 749-755.
[35] THU T M, RAHARDJO H, LEONG E C, et al. Soil–water characteristic curve and consolidation behavior for a compacted silt[J]. Can Geotech J, 2008, 44: 266-275.
[36] LEE I M, SUNG S G, CHO G C, et al. Effect of stress state on the unsaturated shear strength of a weathered granite[J]. Canadian Geotechnical Journal, 2005, 42(2): 624-631.
[37] VANAPALLI S K, FREDLUND D G, PUFAHL D E, et al. Model for the prediction of shear strength with respect to soil suction[J]. Can Geotech J, 1996, 33: 379-392.
[38] 陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm CHEN Zheng-han, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm
-
期刊类型引用(1)
1. 赵飞涛. 基于锚固界面力学特性的拉压型锚杆承载特性研究. 长沙理工大学学报(自然科学版). 2025(02): 99-109 . 百度学术
其他类型引用(0)