Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

植被对土质覆盖层水分运移和存储影响试验研究

焦卫国, 詹良通, 季永新, 贺明卫, 刘振男

焦卫国, 詹良通, 季永新, 贺明卫, 刘振男. 植被对土质覆盖层水分运移和存储影响试验研究[J]. 岩土工程学报, 2020, 42(7): 1268-1275. DOI: 10.11779/CJGE202007010
引用本文: 焦卫国, 詹良通, 季永新, 贺明卫, 刘振男. 植被对土质覆盖层水分运移和存储影响试验研究[J]. 岩土工程学报, 2020, 42(7): 1268-1275. DOI: 10.11779/CJGE202007010
JIAO Wei-guo, ZHANG Liang-tong, JI Yong-xin, HE Ming-wei, LIU Zhen-nan. Experimental study on effects of vegetation on water transport and storage in soil cover[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1268-1275. DOI: 10.11779/CJGE202007010
Citation: JIAO Wei-guo, ZHANG Liang-tong, JI Yong-xin, HE Ming-wei, LIU Zhen-nan. Experimental study on effects of vegetation on water transport and storage in soil cover[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1268-1275. DOI: 10.11779/CJGE202007010

植被对土质覆盖层水分运移和存储影响试验研究  English Version

基金项目: 

黔科合基础项目 [2017]1079

黔科合基础项目 [2017]1513-4

黔科合 LH字[2016]7096

中建四局科技研发项目 CSCEC4B-2015-KT-03

六盘水市科技支撑计划项目 52020-2018-01-04

详细信息
    作者简介:

    焦卫国(1983—),男,博士,副教授,从事非饱和土力学,环境土工方面的研究和教学工作。E-mail:805810460@qq.com

  • 中图分类号: TU47

Experimental study on effects of vegetation on water transport and storage in soil cover

  • 摘要: 植被在土质覆盖层水分存储–释放环节中扮有重要的角色,对防渗能力有重要的影响。在填埋场现场建设了大尺寸黄土土质覆盖层试验基地(长×宽:30 m×20 m),在基地不同测试区种植了植被并进行了土质覆盖层现场降雨试验。实测验证了黄土土质覆盖层最大储水能力;分析了有植被条件下黄土土质覆盖层水分运移和渗透特性;对比了植被条件对覆盖层水分运移和储水能力的影响。结果表明:①有植被条件黄土土质覆盖层可用储水量理论值Sfac为278.32 mm,实测值Sfac为259.82 mm,实测值比理论值小18.50 mm(小6.65%);②植被种植增大了根系生长区的渗透系数,无植被条件饱和渗透系数ks为8.27×10-5 cm/s,有植被条件饱和渗透系数ks大于8.27×10-5 cm/s。无植被时水分首先在覆盖层浅部土层存储,随着降雨的继续逐渐下渗至深层土;有植被时水分在土层全断面存储;③须根系、初期植被条件对毛细阻滞覆盖层储水能力影响较小。有植被条件实测可用储水量Sfac为259.82 mm,无植被条件为251.95 mm,前者仅比后者大7.87 mm(大3.12%)。有植被条件实测总储水量Sfac为381.90 mm,无植被条件为374.03 mm,前者比后者大7.87 mm(大2.10%)。有、无植被条件黄土土质覆盖层储水能力接近,一方面是由于须根植被根系深度分布较浅(0~50 cm);另一方面是由于植被生长时间短未能经历一个完整的生长周期对土体结构影响不显著。
    Abstract: Vegetation plays an important role in water storage and release of soil cover and in impermeable capability of soil. A large-scale loess soil cover (30 m×20 m) is built in field. The vegetation is planted in different areas and rainfall tests are carried out. The maximum water storage capacity is measured. The water transport, saturated permeability coefficient, effects of vegetation on water transport and storage capacity are analyzed and compared. The results show that: (1) The theoretical value of available water storage with vegetation is 278.32 mm, the measured one is 259.82 mm, and the latter is 18.5 mm (6.65%) smaller than the former. (2) The vegetation increases the saturated permeability coefficient of root growth area. It is 8.267×10-5 cm/s without vegetation, and is more than 8.267×10-5 cm/s with vegetation. Without vegetation, water is stored in shallow soil layer firstly and gradually infiltrates into deep soil, but it is stored in the whole section of soil with vegetation. (3) The fibrous root and initial vegetation have some influences on water storage capacity of soil cover. The available water storage measured in the tests is 259.82 mm with vegetation and 251.95 mm without vegetation. The former is only 7.87 mm (3.12%) larger than the latter. The total water storage measured in the tests is 381.90 mm with vegetation and 374.03 mm without vegetation. The former is only 7.87 mm (2.10%) larger than the latter. The water storage capacity of soil cover with or without vegetation is similar. It may be that, on one hand, the vegetation with fibrous root system is shallow (0~50 cm), on the other hand, the short growth period of vegetation has no significant effects on soil structure.
  • 感谢浙江大学建筑工程学院环境土工课题组对本文试验提供的支持与帮助。
  • 图  1   土质覆盖层现场试验基地(有植被条件)

    Figure  1.   Field test base of soil cover (with vegetation)

    图  2   覆盖层土层结构和仪器埋设剖面

    Figure  2.   Structure of soil cover and embedment of instruments

    图  3   覆盖层不同测试区植被生长情况

    Figure  3.   Vegetation growth in different test areas of soil cover

    图  4   核心测试区植被叶面积指数与植被自然高度间关系

    Figure  4.   Relationship between leaf area index and natural height of vegetation in core test area

    图  5   核心测试区植被根系分布深度观测

    Figure  5.   Observation of root depth of vegetation in core test area

    图  6   现场降雨试验覆盖层各水量分配和变化规律

    Figure  6.   Distribution of water in field rainfall experiments

    图  7   坡顶孔压随降雨时间变化

    Figure  7.   Variation of pore water pressure with rainfall time

    图  8   坡顶体积含水率随降雨时间变化

    Figure  8.   Variation of volumetric water content with rainfall time

    图  9   有、无植被条件两次降雨事件期间自然气候--降雨情况

    Figure  9.   Natural climate rainfall experienced by cover in two rainfall events (with and without vegetation)

    图  10   有植被条件降雨试验典型日期坡中剖面土层体积含水率

    Figure  10.   Volumetric water content of middle slope on typical date in rainfall experiments with vegetation

    图  11   有植被条件降雨试验典型日期坡中剖面土层孔压

    Figure  11.   Pore water pressure of middle slope on typical date in rainfall experiments with vegetation

    图  12   无植被极端降雨试验坡中不同深度土层孔压随典型降雨天数变化规律

    Figure  12.   Pore water pressure of middle slope on typical date in rainfall experiments without vegetation

    图  13   有植被条件土质覆盖层实测储水能力分析

    Figure  13.   Analysis of measured water storage capacity of soil cover with vegetation

    表  1   黄土基本参数

    Table  1   Parameters of loess

    土样名称界限粒径含量/%wL/%wP/%IP
    >0.075 mm0.075~0.005 mm<0.005 mm
    Q3黄土2.2171.8326.0036.722.014.7
    下载: 导出CSV

    表  2   单位面积植被叶湿质量、叶面积和叶面积指数

    Table  2   Leaf wet mass, leaf area and leaf area index per unit area of vegetation

    植被高度/cm质量/kg叶面积/m2叶面积指数
    叶片拉直长自然状态
    6~750.180.390.39
    15~20100.491.161.16
    24~27201.102.672.67
    *核心测试区植被参数。
    下载: 导出CSV

    表  3   现场降雨试验覆盖层各水量分配

    Table  3   Distribution of water in field rainfall experiments (mm)

    日期坡面径流土层存储(包含蒸发量)渗漏累计降雨
    11-170000
    11-18036.63036.63
    11-19041.73041.73
    11-20*0105.882.45108.33
    11-210114.477.18121.65
    11-220174.1514.1188.25
    11-23*0174.520.35194.85
    11-240169.425.45194.85
    11-250165.429.45194.85
    11-260162.4532.4194.85
    11-27—12-020157.8137.04194.85
    累计值0157.8137.04194.85
    百分率/%080.9919.01100
    注:*11月20日出现渗漏,11月23日降雨停止,雨停后渗漏继续到12月2日。
    下载: 导出CSV

    表  4   土层实际存储量分析

    Table  4   Analysis of actual storage of soil layer (mm)

    日期大事件参考腾发量土层实际储水量差异ΔS=S1–S2
    水量平衡法S1TDR实测法S2
    11-18降雨开始4.00
    11-20渗漏开始13.4092.4889.972.51
    11-23降雨结束19.00155.50148.407.10
    11-26—12-02渗漏停止32.70125.11118.306.81
    下载: 导出CSV

    表  5   有、无植被条件可用储水能力、总储水能力实测值对比

    Table  5   Comparison of measured values of available water and total water storage capacities with and without vegetation

    参数理论值/mm实测值/mm有、无植被对比
    有植被无植被
    可用储水量Sfac278.32259.82251.95有植被比无植被大3.12%
    总储水量Sfoc400.40381.90374.03有植被比无植被大2.10%
    下载: 导出CSV
  • [1]

    DWYER S F. Construction overview of six landfill cover designs[R]. Albuquerque: Sandia National Laboratories, 2000.

    [2]

    HAUSER V L, WEAND B L, GILL M D. Natural covers for landfills and buried waste[J]. J Environ Eng, 2001, 127(9): 768-775. doi: 10.1061/(ASCE)0733-9372(2001)127:9(768)

    [3] 张文杰, 耿潇. 垃圾填埋场毛细阻滞型腾发封顶工作机理及性能分析[J]. 岩土工程学报, 2016, 38(3): 454-459. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603011.htm

    ZHANG Wen-jie, GENG Xiao. Performance and mechanism of capillary-barrier evaportranspiration cover of landfills[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 454-459. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603011.htm

    [4] 张文杰, 林午, 董林兵. 垃圾填埋场毛细阻滞型腾发封顶模型试验[J]. 岩土力学, 2014, 35(5): 1263-1268. doi: 10.16285/j.rsm.2014.05.025

    ZHANG Wen-jie, LIN Wu, DONG Lin-bing. Model test of a capillary barrier evapotranspiration cover for landfills[J]. Rock and Soil Mechanics, 2014, 35(5): 1263-1268. (in Chinese) doi: 10.16285/j.rsm.2014.05.025

    [5] 赵慧, 刘川顺, 王伟, 等. 垃圾填埋场腾发覆盖系统控制渗滤效果的研究[J]. 中国给水排水, 2008, 24(9): 86-89. doi: 10.3321/j.issn:1000-4602.2008.09.022

    ZHAO Hui, LIU Chuan-shun, WANG Wei, et al. Study of leachate control effect of evapotranspiration landfill cover system[J]. China Water & Wastewater, 2008, 24(9): 86-89. (in Chinese) doi: 10.3321/j.issn:1000-4602.2008.09.022

    [6] 陆海军, 栾茂田, 张金利. 垃圾填埋场传统封顶和ET封顶的比较研究[J]. 岩土力学, 2009, 30(2): 509-514. doi: 10.3969/j.issn.1000-7598.2009.02.039

    LU Hai-jun, LUAN Mao-tian, ZHANG Jin-li. Research on comparision between traditional compacted clay and evapotranspiration cover systems of landfill[J]. Rock and Soil Mechanics, 2009, 30(2): 509-514. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.02.039

    [7] 焦卫国, 詹良通, 季永新, 等. 含非饱和导排层的毛细阻滞覆盖层长期性能分析[J]. 浙江大学学报(工学版), 2019, 53(6): 1101-1109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201906009.htm

    JIAO Wei-guo, ZHAN Liang-tong, JI Yong-xin, et al. Analysis on long-term performance of capillary-barrier cover with unsaturated drainage layer[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(6): 1101-1109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201906009.htm

    [8]

    ALBRIGHT W H, BENSON C H, GEE G W, et al. Field water balance of landfill final covers[J]. Journal of Environmental Quality, 2004, 33(6): 2317-2332. doi: 10.2134/jeq2004.2317

    [9]

    WILLIAM E S, MUNK J, WILLIAM J. Four-year performance evaluation of a pilot-scale evapotranspiration landfill cover in southcentral Alaska[J]. Cold Regions Science and Technology, 2012, 82: 1-7. doi: 10.1016/j.coldregions.2012.03.009

    [10]

    MELCHIOR S, SOKOLLEK V, BERGER K, et al. Results from 18 years of in situ performance testing of landfill cover systems in Germany[J]. Journal of Environmental Engineering, 2010(8): 815-823.

    [11]

    FAYER M J, GEE G W. Multiple-year water balance of soil covers in a semiarid setting[J]. Journal of Environmental Quality, 2006, 35(1): 366-377. doi: 10.2134/jeq2004.0391

    [12]

    BOHNHOFF G L, OGORZALEK A S, BENSON C H. Field data and water-balance predictions for a monolithic cover in a semiarid climate[J]. Journal of Geotechnical and Geo-environmental Engineering, 2009, 135(3): 333-348. doi: 10.1061/(ASCE)1090-0241(2009)135:3(333)

    [13]

    WAUGH W J, SMITH G M. Effects of Root Intrusion at the Burrell, Pennsylvania, Uranium Mill Tailings Disposal Site[R]. Grand Junction: US Department of Energy, 1997.

    [14]

    DEVITT D A, SMITH S D. Root channel macropores enhance downward movement of water in a mojave desert ecosystem[J]. Journal of Arid Environments, 2002, 50(1): 99-108. doi: 10.1006/jare.2001.0853

    [15]

    SONG L, LI J H, ZHOU T, et al. Experimental study on unsaturated hydraulic properties of vegetated soil[J]. Ecol Eng, 2017, 103: 207-216. doi: 10.1016/j.ecoleng.2017.04.013

    [16]

    BORDOLOI S, GARG A, SREEDEEP S, et al. Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth[J]. Bioresour. Technol, 2018, 263: 665-677. doi: 10.1016/j.biortech.2018.05.011

    [17] 李雄威, 孔令伟, 郭爱国. 植被作用下膨胀土渗透和力学特性及堑坡防护机制[J]. 岩土力学, 2013, 34(1): 85-91. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301012.htm

    LI Xiong-wei, KONG Ling-wei, GUO Ai-guo. Permeability and mechanical characteristics of expansive soil and cut slope protection mechanism under vegetation action[J]. Rock and Soil Mechanics, 2013, 34(1): 85-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301012.htm

    [18]

    JOTISANKASA A, SIRIRATTANACHAT T. Effects of grass roots on soil-water retention curve and permeability function[J]. Can Geotech J, 2017, 54: 1612-1622.

    [19]

    NI J J, CHEN X W, NG C W W, et al. Effects of biochar on water retention and matric suction of vegetated soil[J]. Géotechnique Lett, 2018, 8: 124-129. doi: 10.1680/jgele.17.00180

    [20]

    NI J J, BORDOLOI S, SHAOW , et al. Two-year evaluation of hydraulic properties of biochar-amended vegetated soil for application in landfill cover system[J]. Science of the Total Environment, 2020, 712, 136486.

    [21] 程鹏, 李锦辉, 宋磊. 生态边坡的水力和力学特性分析:试验研究[J]. 岩土工程学报, 2017, 39(10): 1901-1907. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710026.htm

    CHENG Peng, LI Jin-hui, SONG Lei. Hydraulic and mechanical characteristics of ecological slopes: experimental study[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1901-1907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710026.htm

    [22] 周腾. 含根系土体水力特性的试验与理论研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    ZHOU Teng. Experimental and Theoretical Research of Hydraulic Properties of Root-Containing Soil[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)

    [23] 焦卫国, 詹良通, 季永新, 等. 黄土–碎石毛细阻滞覆盖层储水能力实测与分析[J]. 岩土工程学报, 2019, 41(6): 1149-1157. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906022.htm

    JIAO Wei-guo, ZHANG Liang-tong, JI Yong-xin, et al. Experimental study on the effect of vegetation on water transport and storage in soil cover[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1149-1157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906022.htm

    [24]

    KHIRE M V, BENSON C H, BOSSCHER P J. Capillary barriers: design variables and water balance[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2000, 126(8): 695-708.

    [25]

    AUBERTIN M, CIFUENTES E, APITHY S A, et al. Analyses of water diversion along inclined covers with capillary barrier effects[J]. Canadian Geotechnical Journal, 2009, 46: 1146-1164.

    [26]

    TAMI D, RAHARDJO H, LEONG E C, et al. Design and laboratory verification of a physical model of sloping capillary barrier[J]. Geotechnical and Geological Engineering, 2004, 41: 814-830.

  • 期刊类型引用(8)

    1. 杨旭辉,柏谦,贾鹏蛟. 地铁车站小直径管幕-横梁支护参数优化分析. 沈阳工业大学学报. 2025(01): 114-123 . 百度学术
    2. 邱建,赵文,路博,孙旭. 新型管幕工法修建地铁车站地层变形特性及参数优化. 东北大学学报(自然科学版). 2024(11): 1645-1655 . 百度学术
    3. 崔光耀,宋博涵,何继华,田宇航. 超近接上跨既有隧道施工影响分区及加固措施效果. 长江科学院院报. 2023(06): 114-118+125 . 百度学术
    4. 伍凯,毕延哲,杨鑫,储修琼. 超浅覆土小净距上跨运营线路盾构掘进超前管幕支护模拟分析. 路基工程. 2023(04): 130-136 . 百度学术
    5. 陈凯. 基于变形控制的密排管幕顶管施工顺序优化分析. 铁道勘察. 2023(05): 149-157 . 百度学术
    6. 王子君,赵文,程诚,柏谦. 地铁车站小直径管幕工法开挖变形规律. 东北大学学报(自然科学版). 2022(11): 1630-1637 . 百度学术
    7. 袁庆利. 大直径密排管幕的力学分析及在地铁车站中的应用. 吉林水利. 2021(06): 1-10 . 百度学术
    8. 张贺. 新型钢管幕力学变形特征及其在地铁车站中的应用. 工程建设. 2021(09): 1-6 . 百度学术

    其他类型引用(3)

图(13)  /  表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 11
出版历程
  • 收稿日期:  2019-05-02
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-06-30

目录

    /

    返回文章
    返回