• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

细粒铁尾矿的沉积特性与基本物理力学性质试验研究

郭晓霞, 陈之祥, 邵龙潭, 田筱剑

郭晓霞, 陈之祥, 邵龙潭, 田筱剑. 细粒铁尾矿的沉积特性与基本物理力学性质试验研究[J]. 岩土工程学报, 2020, 42(7): 1220-1227. DOI: 10.11779/CJGE202007005
引用本文: 郭晓霞, 陈之祥, 邵龙潭, 田筱剑. 细粒铁尾矿的沉积特性与基本物理力学性质试验研究[J]. 岩土工程学报, 2020, 42(7): 1220-1227. DOI: 10.11779/CJGE202007005
GUO Xiao-xia, CHEN Zhi-xiang, SHAO Long-tan, TIAN Xiao-jian. Experimental study on sedimentary behavior and basic physical mechanical properties of fine iron tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1220-1227. DOI: 10.11779/CJGE202007005
Citation: GUO Xiao-xia, CHEN Zhi-xiang, SHAO Long-tan, TIAN Xiao-jian. Experimental study on sedimentary behavior and basic physical mechanical properties of fine iron tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1220-1227. DOI: 10.11779/CJGE202007005

细粒铁尾矿的沉积特性与基本物理力学性质试验研究  English Version

基金项目: 

国家重点实验室自主研究课题项目 S18406

国家自然科学基金项目 51479023

国家自然科学基金项目 51309047

国家自然科学基金项目 41877251

详细信息
    作者简介:

    郭晓霞(1978—),女,博士,高级工程师,主要从事岩土与环境力学等方面的教学和科研工作。E-mail:hanyuer@dlut.edu.cn

    通讯作者:

    邵龙潭, E-mail:shaolt@hotmail.com

  • 中图分类号: TU43

Experimental study on sedimentary behavior and basic physical mechanical properties of fine iron tailings

  • 摘要: 尾矿的沉积与固结过程是形成强度和确定变形量的重要依据。为探求尾矿沉积过程中应力和孔隙水压力演变规律,揭示尾矿料的强度形成机理和变形特征,结合现场溜槽试验,对细粒铁尾矿的沉积坡度、以及沉积过程中的应力、孔隙水压力和有效应力的演变规律进行了监测。同时,采用十字板剪切仪确定了沉积完成后尾矿的剪切强度。在此基础上,对不同沉积断面尾矿料的颗粒级配和渗透特性进行了试验研究,分析尾矿沉积速率的演变机理。试验结果表明:颗粒研磨极其均匀的尾矿料的堆积形式和渗透特性与尾矿料的水力特性存在差别;受尾矿颗粒相对密实度较大、颗粒分布均匀等因素影响,增加尾矿料的可透水边界较施加外荷载,更能提升尾矿料中有效应力的形成速率;尾矿料表层硬化和封闭微孔隙引发了上层滞水入渗困难,应采用必要的引水导流措施降低高势能流体对筑坝稳定性的影响。
    Abstract: The process of deposition and consolidation of fragmented multiphase materials is the basis and prerequisite for studying their strength and deformation. To find out the evolution laws of stress and pore water pressure during the deposition of fine iron tailings and reveal the strength formation mechanism and deformation characteristics of tailings reservoir, the sedimentary slope of tailings, stress, pore water pressure and effective stress during the deposition process are monitored by field large-scale flume tests. Meanwhile, the shear strength of tailings after deposition is determined by the vane shear apparatus. On this basis, grain-size distribution and permeability characteristics of tailings from different sedimentary sections are tested to analyze the evolution mechanism of tailings sedimentation rate. The experimental results show that the accumulation form and permeability characteristics of tailings with extremely uniform particle grinding are different from those of soils. Due to the large proportion of tailings particles and uniform distribution of particles, increasing the permeable boundary of tailings can improve the formation rate of effective stress of tailings better than applying external loads. The surface hardening of tailings and the sealing of micro-pore trigger the formation of effective stress in tailings. It is difficult to infiltrate the stagnant water in the upper layer. Necessary diversion measures should be adopted to reduce the influences of high potential fluid on the stability of dam construction.
  • 随着中国交通行业的不断发展,中国桥梁建设水平得到大幅提升,对桥梁跨越能力的要求也不断增长,悬索桥作为所有桥型中跨越能力最大的桥型,越来越成为跨越大江、大河的主要解决方案。但是随着悬索桥跨度的不断增加,锚碇规模急剧扩大,造成锚碇建设成本过高。因此研究锚碇沉井基础的受力变形特性对于悬索桥的锚碇优化设计显得尤为重要。

    Alampalli[1]在1994年研究了沉井在承受竖向和水平向荷载时的结构响应;李永盛[2]和李家平等[3]分别在1995年和2005年通过模型试验探讨了沉井基础的变形机制和破坏失稳形式;穆保岗等[4]在2017年通过模型试验研究了水平荷载长期作用下沉井变位的特性;Liu等[5]在2019年通过模型试验结合数值模拟分析研究了重力式锚碇的稳定性。

    本文首先进行了在分级水平荷载下的沉井在砂箱中的模型试验,然后基于PLAXIS 3D软件建立了有限元模型,并分析了沉井的位移及沉井前侧和沉井底部的土压力,研究了水平荷载条件下沉井的受力变形规律。

    本文依托南京仙新路大桥北锚碇沉井工程,沉井长度为70 m,宽度为50 m,高度为49.5 m。该工程地基土以粉砂和中砂为主。

    本试验采用的模型槽平面尺寸为4.0 m×2.0 m,高1.0 m。地基土采用中砂,其相对密度为2.68,最大孔隙比0.881,最小孔隙比0.463,不均匀系数3.89,曲率系数0.92。模型试验分层填筑地基土,控制每层填土的厚度为0.1 m,最终得到地基土的干密度为1.55 g/cm3,含水率0.63%,相对密实度为59.61%,内摩擦角为34.5°(快剪)。

    沉井模型平面尺寸为0.7 m×0.5 m,高0.495 m,由厚度为22 mm的钢板焊接而成,试验过程将沉井看成刚体,不考虑沉井自身的变形,为模拟沉井与土体相互作用的界面,通过在沉井表面黏2~3 mm的砂粒实现[6],如图1所示。

    图  1  沉井界面的处理
    Figure  1.  Surface treatment for cassion

    模型试验中设计荷载为62kg,本文中水平荷载分级施加,每级荷载为设计荷载的~0.5倍,试验过程中每级荷载施加持续15 min直至土体破坏(土体破坏表现为沉井盖板处的位移急剧增大),沉井加载示意图如图2所示。

    图  2  沉井加载示意图
    Figure  2.  Schematic diagram of cassion under loading

    本研究建立的有限元模型完全基于模型试验,土体及沉井的单元形状均为四面体十节点实体单元,数值模型的网格如图3所示。

    图  3  有限元模型网格
    Figure  3.  Mesh of finite element model

    砂土的本构模型采用土体硬化(HS)模型,土层参数[7]取值见表1

    表  1  土层参数
    Table  1.  Soil parameters
    土层γ/(kN·m-3)eEs/MPaErefoed/MPaEref50/MPaErefur/MPacφ/(°)ψ/(°)m
    砂土15.60.72310.210.210.230.6034.500.5
    注:γ为砂土的重度;e为砂土的孔隙比;Es为砂土的压缩模量;Erefoed为砂土的主固结加载切线刚度;Eref50为砂土的标准三轴排水试验割线刚度;Erefur为砂土的卸载重加载刚度;c为砂土的有效黏聚力;φ为砂土的有效摩擦角;ψ为砂土的膨胀角;m为砂土的刚度应力水平相关幂值。
    下载: 导出CSV 
    | 显示表格

    在沉井盖板顶部设置3个位移测量点A、B、C。在位移测量点上放置位移靶标,采用TH-ISM-ST机器视觉测量仪对靶标位移进行测量,分辨率为0.01 mm,靶标布置如图4

    图  4  靶标布置图
    Figure  4.  Layout of targets

    模型试验和数值模拟的位移对比如图5所示,由图易知,模型试验和数值模拟的靶标位移较为一致,本文中取水平位移随设计荷载增加而不断增加的线弹性阶段为水平承载力极限值[4],即安全系数取值为4。

    图  5  模试验和数值模拟的位移对比
    Figure  5.  Comparison of displacements between model tests and numerical simulations

    在沉井前侧设置8个土压力盒,布置如图6所示,由于土压力盒对称分布,且沉井左右侧完全对称,因此取沉井左右两侧土压力盒平均值作为最终结果,结果如图7所示,其中模型试验中3号及3'号土压力盒数据较差,本文中已舍弃,余下的沉井前侧土压力盒数据和数值模拟结果较吻合。

    图  6  沉井前侧土压力盒布置图
    Figure  6.  Layout of earth pressure cells on front side of caisson
    图  7  模试验和数值模拟的沉井前侧土压力对比
    Figure  7.  Comparison of soil pressures on front side of caisson between model tests and numerical simulations

    在沉井底部设置12个土压力盒,布置如图8所示,同理,取沉井左右两侧土压力盒平均值作为最终结果,结果如图9所示,其中8号及8'号土压力盒数据较差,本文中已舍弃,余下的沉井底部土压力盒数据和数值模拟结果对比,发现当施加荷载/设计荷载的值小于等于4时较一致,当其值大于4之后,二者的结果相差较大。

    图  8  沉井底部土压力盒布置图
    Figure  8.  Layout of earth pressure cells on bottom of caisson
    图  9  模型试验和数值模拟的沉井前侧土压力对比
    Figure  9.  Comparison of soil pressures on bottom of the caisson between model tests and numerical simulations

    本文在已有的研究基础上,通过开展模型试验和数值模拟计算,得到水平荷载下沉井的受力变位特性,主要得出以下结论:

    (1)对锚碇沉井基础在砂土中的受力变位特性进行了试验研究和有限元分析,结果显示,水平荷载下锚碇沉井基础在砂土中的破坏模式为倾覆破坏,且安全系数远大于2,说明现阶段规范[8]中锚碇设计较为保守,有进一步的优化空间。

    (2)通过PLAXIS 3D软件建立了锚碇沉井基础的有限元模型,采用应变硬化的本构模型,结果表明模型试验的结果和有限元模型计算的结果较为一致,说明数值建模过程中的土体本构模型及参数取值可靠,表明PLAXIS 3D软件能够较好的模拟锚碇沉井在砂土中的受力变形行为。

    上述模型试验和有限元分析,只是针对水平荷载条件下锚碇沉井基础在砂土中的受力特性开展的研究,只考虑了单层干砂的地基土层,尚需更近一步探索。

  • 图  1   试验布置

    Figure  1.   Test arrangement

    图  2   现场流槽试验结果

    Figure  2.   Results of flume tests on tailings

    图  3   尾矿流槽中的非均匀流态

    Figure  3.   Non-uniform flow patterns in tailings flume

    图  4   不同断面处尾矿料的颗粒级配

    Figure  4.   Grain-size distribution curves of different sections

    图  5   现场流槽十字板剪切试验结果

    Figure  5.   Results of vane shear tests of tailings flume

    图  6   基于十字板抗剪强度的内摩擦角

    Figure  6.   Friction angles based on vane shear strength tests

    表  1   试验过程中各阶段

    Table  1   Schedule of flume tests on tailings

    序号时间事项
    12011年10月13日开始排放尾矿
    22011年10月13日初始阶段放矿
    32011年10月14日—15日第二阶段放矿
    42011年10月16日—17日第三阶段放矿
    52011年10月23日—24日第四阶段放矿
    62011年11月08日降雨
    72011年11月20日监测到尾矿冻结
    82011年12月10日停止数据监测
    下载: 导出CSV

    表  2   不同断面处尾矿料的颗粒组成

    Table  2   Grain composition of different sections

     断面/m土粒相对密实度颗粒组成/%不均匀系数Cu曲率系数Cc液限含水率/%塑限含水率/%塑性指数Ip土质类型
    2~0.5 mm0.5~0.25 mm0.25~0.075 mm0.075~0.005 mm<0.005 mm
     52.8770.246.6928.1364.700.254.470.5711.6821.559.87低液限尾粉土
    102.8510.369.3635.8653.920.504.561.0713.2623.179.91低液限尾粉土
    202.8460.064.6139.5654.681.104.421.0013.3022.779.47低液限尾粉土
    402.8380.022.5425.3471.900.213.531.0714.4925.8011.31低液限尾粉质黏土
    502.8610.020.4523.2875.860.403.941.0815.7627.8012.04低液限尾粉质黏土
    602.8390.010.2414.6084.400.752.870.8914.5725.7311.16低液限尾粉质黏土
    702.8060.020.2515.7482.501.503.571.2912.3225.9913.67低液限尾粉质黏土
    802.86800.3712.2786.660.703.501.5914.5425.8511.31低液限尾粉质黏土
    902.86400.2213.8984.191.703.150.9515.3626.2310.87低液限尾粉质黏土
    1002.87700.1611.3186.042.504.110.9715.5727.4211.85低液限尾粉质黏土
    1202.88400.425.7291.662.203.080.9017.0927.2310.14低液限尾粉质黏土
    1402.87800.105.8491.572.503.610.7916.6129.0512.44低液限尾粉质黏土
    下载: 导出CSV

    表  3   不同断面处尾矿料的渗透系数

    Table  3   Permeability coefficient of different sections

    断面位置/m土粒相对密实度干密度/(g·cm-3)最大干密度/(g·cm-3)最优含水率/%渗透系数/(cm·s-1)
    52.881.5131.87814.58.85×10-5
    152.841.5171.86815.52.63×10-4
    252.841.5531.91513.76.02×10-5
    402.841.4981.79515.93.28×10-4
    802.871.4751.82815.81.27×10-4
    1202.891.5161.81916.77.75×10-5
    下载: 导出CSV

    表  4   各测试点土样的基本物性参数

    Table  4   Basic physical properties of soil samples at different test points

    取土点/m颗粒相对密实度天然含水率/%天然密度/(g·cm-3)
    102.8327.42.032
    202.8427.82.027
    402.8427.01.985
    602.8427.71.965
    702.8523.11.939
    802.8732.91.960
    902.8626.61.984
    1002.8727.81.922
    下载: 导出CSV
  • [1] 张力霆, 齐清兰, 李强, 等. 尾矿库坝体溃决演进规律的模型试验研究[J]. 水利学报, 2016, 47(2): 229-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602013.htm

    ZHANG Li-ting, QI Qing-lan, LI Qiang, et al. Experimental model study on dam break and evolution law of tailings pond[J]. Journal of Hydraulic Engineering, 2016, 47(2): 229-235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602013.htm

    [2] 张力霆. 尾矿库溃坝研究综述[J]. 水利学报, 2013, 44(5): 594-600. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201305015.htm

    ZHANG Li-ting. Summary on the dam-break of tailing pond[J]. Journal of Hydraulic Engineering, 2013, 44(5): 594-600. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201305015.htm

    [3] 陈生水. 尾矿库安全评价存在的问题与对策[J]. 岩土工程学报, 2016, 38(10): 1869-1873. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201610020.htm

    CHEN Sheng-shui. Problems and countermeasures of safety evaluation of tailing pond[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1869-1873. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201610020.htm

    [4] 孙从露, 邵龙潭, 郭晓霞. 尾矿砂不同频率动三轴试验研究[J]. 矿业研究与开发, 2015, 35(11): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201511017.htm

    SUN Cong-lu, SHAO Long-tan, GUO Xiao-xia. Study on dynamic triaxial tests of tailings sand under different vibration frequencies[J]. Mining Research and Development, 2015, 35(11): 69-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201511017.htm

    [5] 于斯滢, 邵龙潭, 刘士乙. 基于有限元极限平衡法的尾矿坝坝体稳定分析[J]. 岩土力学, 2013, 34(4): 1185-1190.

    YU Si-ying, SHAO Long-tan, LIU Shi-yi. Stability analysis of tailings dam based on finite element limit equilibrium method[J]. Rock and Soil Mechanics, 2013, 34(4): 1185-1190. (in Chinese)

    [6] 刘建民, 邱月, 郭婷婷, 等. 饱和重塑黄土液化孔压增长模型的试验研究[J]. 科学技术与工程, 2019, 19(19): 226-232.

    LIU Jian-min, QIU Yue, GUO Ting-ting, et al. Experimental study on pore pressure growth model of saturated remolded loess sample during liquefaction[J]. Science Technology and Engineering, 2019, 19(19): 226-232. (in Chinese)

    [7]

    GARING C, CHALENDAR J A D, VOLTOLINI M, et al. Pore-scale capillary pressure analysis using multi-scale X-ray micromotography[J]. Advances in Water Resources, 2017, 104: 223-241.

    [8] 刘叔灼, 李慧子, 单毅, 等. 基于能量法的尾矿土动孔压模型研究[J]. 岩土工程学报, 2016, 38(11): 2051-2058. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611019.htm

    LIU Shu-zhuo, LI Hui-zi, SHAN Yi, et al. Energy method for analyzing dynamic pore water pressure model for tailing soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 104: 223-241. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611019.htm

    [9] 巫尚蔚, 杨春和, 张超, 等. 尾矿浆沉积室内模拟试验[J]. 工程科学学报, 2017, 39(10): 1485-1492. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201710004.htm

    WU Shang-wei, YANG Chun-he, ZHANG Chao, et al. Indoor scale-down test of tailings[J]. Chinese Journal of Engineering, 2017, 39(10): 1485-1492. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201710004.htm

    [10] 刘洋, 赵学同, 吴顺川. 快速冲填尾矿库静力液化分析与数值模拟[J]. 岩石力学与工程学报, 2014, 33(6): 1158-1168. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406009.htm

    LIU Yang, ZHAO Xue-tong, WU Shun-chuan. Analysis of static liquefaction and numerical simulation for tailings pond under high deposting rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1158-1168. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406009.htm

    [11]

    LIANG W, XIONG D S. Research on the solution to coefficient of earth pressure at rest using effective stress spade[J]. Journal of Railway Engineering Society, 2017, 34(7): 5-9, 35.

    [12] 罗战友, 夏建中, 龚晓南, 等. 考虑孔压消散的静压单桩挤土位移场研究[J]. 岩石力学与工程学报, 2014, 33(增刊1): 2765-2772. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1025.htm

    LUO Zhan-you, XIA Jian-zhong, GONG Xiao-nan. Study of compacting soil displacements around jacked single pile based on excess pore pressure dissipation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2765-2772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1025.htm

    [13] 郑彬彬. 高浓度尾矿上游式堆坝基础性问题研究及坝体稳定性分析[D]. 重庆: 重庆大学, 2017.

    ZHENG Bin-bin. Research on the Basic Issues for Upstream Method of High Thickened Tailings and Stability Analysis of Tailings Dam[D]. Chongqing: Chongqing University, 2017. (in Chinese)

    [14] 张鹏伟, 吴辉, 胡黎明, 等. 铁矿尾矿料力学特性及坝体变形稳定性研究[J]. 工程地质学报, 2015, 23(6): 1189-1195. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506025.htm

    ZHANG Peng-wei, WU Hui, HU Li-ming, et al. Mechanical characteristics of iron mine tailing materials and analysis on deformation and stability of tailing dam[J]. Journal of Engineering Geology, 2015, 23(6): 1189-1195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506025.htm

    [15] 成词峰, 徐颖, 郑庭. 混合式堆坝尾矿料的基本性能及沉积规律分析[J]. 青岛理工大学学报, 2018, 39(2): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-QDJG201802008.htm

    CHENG Ci-feng, XU Ying, ZHENG Ting. Properties of tailings and the law of deposition about tailings dam constructed by upstream and centerline methods[J]. Journal of Qingdao University of Technology, 2018, 39(2): 36-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDJG201802008.htm

    [16] 尹光志, 张千贵, 魏作安, 等. 孔隙水运移特性及对尾矿细观结构作用机制试验研究[J]. 岩石力学与工程学报, 2012, 31(1): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201201011.htm

    YIN Guang-zhi, ZHANG Qian-gui, WEI Zuo-an, et al. Experimental study of migration characteristics of pore water and its effect on meso-structure of tailings[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 71-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201201011.htm

    [17] 魏作安, 杨永浩, 赵怀军, 等. 小打鹅尾矿库尾矿堆积坝稳定性研究[J]. 东北大学学报(自然科学版), 2016, 37(4): 589-593. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201604028.htm

    WEI Zuo-an, YANG Yong-hao, ZHAO Huai-jun, et al. Stability of tailings dam of Xiaodae Tailings pond[J]. Journal of Northeastern University(Natural Science), 2016, 37(4): 589-593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201604028.htm

    [18] 冯彦芳, 李顺群, 陈之祥, 等. 基于土体各向异性的雨水入渗渗井试验研究与验证[J]. 长江科学院院报, 2019, 36(3): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201903022.htm

    FENG Yan-fang, LI Shun-qun, CHEN Zhi-xiang, et al. Experimental study and verification of rainwater infiltration well based on soil anisotropy[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(3): 110-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201903022.htm

    [19] 李顺群, 贾红晶, 王杏杏, 等. 轴平移技术在基质吸力测控中的局限性和误差分析[J]. 岩土力学, 2016, 37(11): 3089-3095, 3252. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611007.htm

    LI Shun-qun, JIA Hong-jing, WANG Xing-xing, et al. Limitation and error analysis of axis translation technique for measuring and controlling matric suction[J]. Rock and Soil Mechanics, 2016, 37(11): 3089-3095, 3252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611007.htm

    [20] 王建州, 刘书幸, 周国庆, 等. 深季节冻土地区基坑工程水平冻胀力试验研究[J]. 中国矿业大学学报, 2018, 47(4): 815-821. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804015.htm

    WANG Jian-zhou, LIU Shu-xing, ZHOU Guo-qing, et al. Model experiment on frost-heave force of foundation pit at deepseasonal frozen regions[J]. Journal of China University of Mining & Technology, 2018, 47(4): 815-821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804015.htm

    [21] 蔡正银, 李小梅, 韩林, 等. 考虑级配和颗粒破碎影响的堆石料临界状态研究[J]. 岩土工程学报, 2016, 38(8): 1357-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608001.htm

    CAI Zheng-yin, LI Xiao-mei, HAN Lin, et al. Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357-1364. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608001.htm

    [22]

    ONO K, YU Y, SAWADA Y, et al. Lateral force–displacement prediction for buried pipe under different effective stress condition[J]. International Journal of Geotechnical Engineering, 2017(2): 1-9.

    [23]

    CHUN L I, ZHAO F L, XIU Z G, et al. Testing investigation on effective stress increment of unsaturated sandy soils[J]. Journal of Northeastern University, 2017, 38(8): 1158-1162.

    [24] 张常光, 赵均海, 朱倩. 非饱和土抗剪强度公式分类及总结[J]. 建筑科学与工程学报, 2012, 29(2): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201202016.htm

    ZHANG Chang-guang, ZHAO Jun-hai, ZHU Qian. Classification and summary of shear strength formulae for unsaturated soils[J]. Journal of Architecture and Civil Engineering, 2012, 29(2): 74-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201202016.htm

    [25] 陈星欣, 白冰, 于涛, 等. 粒径和渗流速度对多孔介质中悬浮颗粒迁移和沉积特性的耦合影响[J]. 岩石力学与工程学报, 2013, 32(增刊1): 2840-2845. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1033.htm

    CHEN Xing-xin, BAI Bing, YU Tao, et al. Coupled effects of particle size and flow rate on characteristics of particle transportation and deposition in porous media[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2840-2845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1033.htm

图(6)  /  表(4)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  82
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-03
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-06-30

目录

/

返回文章
返回