• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

细粒铁尾矿的沉积特性与基本物理力学性质试验研究

郭晓霞, 陈之祥, 邵龙潭, 田筱剑

郭晓霞, 陈之祥, 邵龙潭, 田筱剑. 细粒铁尾矿的沉积特性与基本物理力学性质试验研究[J]. 岩土工程学报, 2020, 42(7): 1220-1227. DOI: 10.11779/CJGE202007005
引用本文: 郭晓霞, 陈之祥, 邵龙潭, 田筱剑. 细粒铁尾矿的沉积特性与基本物理力学性质试验研究[J]. 岩土工程学报, 2020, 42(7): 1220-1227. DOI: 10.11779/CJGE202007005
GUO Xiao-xia, CHEN Zhi-xiang, SHAO Long-tan, TIAN Xiao-jian. Experimental study on sedimentary behavior and basic physical mechanical properties of fine iron tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1220-1227. DOI: 10.11779/CJGE202007005
Citation: GUO Xiao-xia, CHEN Zhi-xiang, SHAO Long-tan, TIAN Xiao-jian. Experimental study on sedimentary behavior and basic physical mechanical properties of fine iron tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1220-1227. DOI: 10.11779/CJGE202007005

细粒铁尾矿的沉积特性与基本物理力学性质试验研究  English Version

基金项目: 

国家重点实验室自主研究课题项目 S18406

国家自然科学基金项目 51479023

国家自然科学基金项目 51309047

国家自然科学基金项目 41877251

详细信息
    作者简介:

    郭晓霞(1978—),女,博士,高级工程师,主要从事岩土与环境力学等方面的教学和科研工作。E-mail:hanyuer@dlut.edu.cn

    通讯作者:

    邵龙潭, E-mail:shaolt@hotmail.com

  • 中图分类号: TU43

Experimental study on sedimentary behavior and basic physical mechanical properties of fine iron tailings

  • 摘要: 尾矿的沉积与固结过程是形成强度和确定变形量的重要依据。为探求尾矿沉积过程中应力和孔隙水压力演变规律,揭示尾矿料的强度形成机理和变形特征,结合现场溜槽试验,对细粒铁尾矿的沉积坡度、以及沉积过程中的应力、孔隙水压力和有效应力的演变规律进行了监测。同时,采用十字板剪切仪确定了沉积完成后尾矿的剪切强度。在此基础上,对不同沉积断面尾矿料的颗粒级配和渗透特性进行了试验研究,分析尾矿沉积速率的演变机理。试验结果表明:颗粒研磨极其均匀的尾矿料的堆积形式和渗透特性与尾矿料的水力特性存在差别;受尾矿颗粒相对密实度较大、颗粒分布均匀等因素影响,增加尾矿料的可透水边界较施加外荷载,更能提升尾矿料中有效应力的形成速率;尾矿料表层硬化和封闭微孔隙引发了上层滞水入渗困难,应采用必要的引水导流措施降低高势能流体对筑坝稳定性的影响。
    Abstract: The process of deposition and consolidation of fragmented multiphase materials is the basis and prerequisite for studying their strength and deformation. To find out the evolution laws of stress and pore water pressure during the deposition of fine iron tailings and reveal the strength formation mechanism and deformation characteristics of tailings reservoir, the sedimentary slope of tailings, stress, pore water pressure and effective stress during the deposition process are monitored by field large-scale flume tests. Meanwhile, the shear strength of tailings after deposition is determined by the vane shear apparatus. On this basis, grain-size distribution and permeability characteristics of tailings from different sedimentary sections are tested to analyze the evolution mechanism of tailings sedimentation rate. The experimental results show that the accumulation form and permeability characteristics of tailings with extremely uniform particle grinding are different from those of soils. Due to the large proportion of tailings particles and uniform distribution of particles, increasing the permeable boundary of tailings can improve the formation rate of effective stress of tailings better than applying external loads. The surface hardening of tailings and the sealing of micro-pore trigger the formation of effective stress in tailings. It is difficult to infiltrate the stagnant water in the upper layer. Necessary diversion measures should be adopted to reduce the influences of high potential fluid on the stability of dam construction.
  • 图  1   试验布置

    Figure  1.   Test arrangement

    图  2   现场流槽试验结果

    Figure  2.   Results of flume tests on tailings

    图  3   尾矿流槽中的非均匀流态

    Figure  3.   Non-uniform flow patterns in tailings flume

    图  4   不同断面处尾矿料的颗粒级配

    Figure  4.   Grain-size distribution curves of different sections

    图  5   现场流槽十字板剪切试验结果

    Figure  5.   Results of vane shear tests of tailings flume

    图  6   基于十字板抗剪强度的内摩擦角

    Figure  6.   Friction angles based on vane shear strength tests

    表  1   试验过程中各阶段

    Table  1   Schedule of flume tests on tailings

    序号时间事项
    12011年10月13日开始排放尾矿
    22011年10月13日初始阶段放矿
    32011年10月14日—15日第二阶段放矿
    42011年10月16日—17日第三阶段放矿
    52011年10月23日—24日第四阶段放矿
    62011年11月08日降雨
    72011年11月20日监测到尾矿冻结
    82011年12月10日停止数据监测
    下载: 导出CSV

    表  2   不同断面处尾矿料的颗粒组成

    Table  2   Grain composition of different sections

     断面/m土粒相对密实度颗粒组成/%不均匀系数Cu曲率系数Cc液限含水率/%塑限含水率/%塑性指数Ip土质类型
    2~0.5 mm0.5~0.25 mm0.25~0.075 mm0.075~0.005 mm<0.005 mm
     52.8770.246.6928.1364.700.254.470.5711.6821.559.87低液限尾粉土
    102.8510.369.3635.8653.920.504.561.0713.2623.179.91低液限尾粉土
    202.8460.064.6139.5654.681.104.421.0013.3022.779.47低液限尾粉土
    402.8380.022.5425.3471.900.213.531.0714.4925.8011.31低液限尾粉质黏土
    502.8610.020.4523.2875.860.403.941.0815.7627.8012.04低液限尾粉质黏土
    602.8390.010.2414.6084.400.752.870.8914.5725.7311.16低液限尾粉质黏土
    702.8060.020.2515.7482.501.503.571.2912.3225.9913.67低液限尾粉质黏土
    802.86800.3712.2786.660.703.501.5914.5425.8511.31低液限尾粉质黏土
    902.86400.2213.8984.191.703.150.9515.3626.2310.87低液限尾粉质黏土
    1002.87700.1611.3186.042.504.110.9715.5727.4211.85低液限尾粉质黏土
    1202.88400.425.7291.662.203.080.9017.0927.2310.14低液限尾粉质黏土
    1402.87800.105.8491.572.503.610.7916.6129.0512.44低液限尾粉质黏土
    下载: 导出CSV

    表  3   不同断面处尾矿料的渗透系数

    Table  3   Permeability coefficient of different sections

    断面位置/m土粒相对密实度干密度/(g·cm-3)最大干密度/(g·cm-3)最优含水率/%渗透系数/(cm·s-1)
    52.881.5131.87814.58.85×10-5
    152.841.5171.86815.52.63×10-4
    252.841.5531.91513.76.02×10-5
    402.841.4981.79515.93.28×10-4
    802.871.4751.82815.81.27×10-4
    1202.891.5161.81916.77.75×10-5
    下载: 导出CSV

    表  4   各测试点土样的基本物性参数

    Table  4   Basic physical properties of soil samples at different test points

    取土点/m颗粒相对密实度天然含水率/%天然密度/(g·cm-3)
    102.8327.42.032
    202.8427.82.027
    402.8427.01.985
    602.8427.71.965
    702.8523.11.939
    802.8732.91.960
    902.8626.61.984
    1002.8727.81.922
    下载: 导出CSV
  • [1] 张力霆, 齐清兰, 李强, 等. 尾矿库坝体溃决演进规律的模型试验研究[J]. 水利学报, 2016, 47(2): 229-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602013.htm

    ZHANG Li-ting, QI Qing-lan, LI Qiang, et al. Experimental model study on dam break and evolution law of tailings pond[J]. Journal of Hydraulic Engineering, 2016, 47(2): 229-235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602013.htm

    [2] 张力霆. 尾矿库溃坝研究综述[J]. 水利学报, 2013, 44(5): 594-600. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201305015.htm

    ZHANG Li-ting. Summary on the dam-break of tailing pond[J]. Journal of Hydraulic Engineering, 2013, 44(5): 594-600. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201305015.htm

    [3] 陈生水. 尾矿库安全评价存在的问题与对策[J]. 岩土工程学报, 2016, 38(10): 1869-1873. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201610020.htm

    CHEN Sheng-shui. Problems and countermeasures of safety evaluation of tailing pond[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1869-1873. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201610020.htm

    [4] 孙从露, 邵龙潭, 郭晓霞. 尾矿砂不同频率动三轴试验研究[J]. 矿业研究与开发, 2015, 35(11): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201511017.htm

    SUN Cong-lu, SHAO Long-tan, GUO Xiao-xia. Study on dynamic triaxial tests of tailings sand under different vibration frequencies[J]. Mining Research and Development, 2015, 35(11): 69-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201511017.htm

    [5] 于斯滢, 邵龙潭, 刘士乙. 基于有限元极限平衡法的尾矿坝坝体稳定分析[J]. 岩土力学, 2013, 34(4): 1185-1190.

    YU Si-ying, SHAO Long-tan, LIU Shi-yi. Stability analysis of tailings dam based on finite element limit equilibrium method[J]. Rock and Soil Mechanics, 2013, 34(4): 1185-1190. (in Chinese)

    [6] 刘建民, 邱月, 郭婷婷, 等. 饱和重塑黄土液化孔压增长模型的试验研究[J]. 科学技术与工程, 2019, 19(19): 226-232.

    LIU Jian-min, QIU Yue, GUO Ting-ting, et al. Experimental study on pore pressure growth model of saturated remolded loess sample during liquefaction[J]. Science Technology and Engineering, 2019, 19(19): 226-232. (in Chinese)

    [7]

    GARING C, CHALENDAR J A D, VOLTOLINI M, et al. Pore-scale capillary pressure analysis using multi-scale X-ray micromotography[J]. Advances in Water Resources, 2017, 104: 223-241.

    [8] 刘叔灼, 李慧子, 单毅, 等. 基于能量法的尾矿土动孔压模型研究[J]. 岩土工程学报, 2016, 38(11): 2051-2058. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611019.htm

    LIU Shu-zhuo, LI Hui-zi, SHAN Yi, et al. Energy method for analyzing dynamic pore water pressure model for tailing soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 104: 223-241. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611019.htm

    [9] 巫尚蔚, 杨春和, 张超, 等. 尾矿浆沉积室内模拟试验[J]. 工程科学学报, 2017, 39(10): 1485-1492. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201710004.htm

    WU Shang-wei, YANG Chun-he, ZHANG Chao, et al. Indoor scale-down test of tailings[J]. Chinese Journal of Engineering, 2017, 39(10): 1485-1492. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201710004.htm

    [10] 刘洋, 赵学同, 吴顺川. 快速冲填尾矿库静力液化分析与数值模拟[J]. 岩石力学与工程学报, 2014, 33(6): 1158-1168. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406009.htm

    LIU Yang, ZHAO Xue-tong, WU Shun-chuan. Analysis of static liquefaction and numerical simulation for tailings pond under high deposting rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1158-1168. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406009.htm

    [11]

    LIANG W, XIONG D S. Research on the solution to coefficient of earth pressure at rest using effective stress spade[J]. Journal of Railway Engineering Society, 2017, 34(7): 5-9, 35.

    [12] 罗战友, 夏建中, 龚晓南, 等. 考虑孔压消散的静压单桩挤土位移场研究[J]. 岩石力学与工程学报, 2014, 33(增刊1): 2765-2772. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1025.htm

    LUO Zhan-you, XIA Jian-zhong, GONG Xiao-nan. Study of compacting soil displacements around jacked single pile based on excess pore pressure dissipation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2765-2772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1025.htm

    [13] 郑彬彬. 高浓度尾矿上游式堆坝基础性问题研究及坝体稳定性分析[D]. 重庆: 重庆大学, 2017.

    ZHENG Bin-bin. Research on the Basic Issues for Upstream Method of High Thickened Tailings and Stability Analysis of Tailings Dam[D]. Chongqing: Chongqing University, 2017. (in Chinese)

    [14] 张鹏伟, 吴辉, 胡黎明, 等. 铁矿尾矿料力学特性及坝体变形稳定性研究[J]. 工程地质学报, 2015, 23(6): 1189-1195. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506025.htm

    ZHANG Peng-wei, WU Hui, HU Li-ming, et al. Mechanical characteristics of iron mine tailing materials and analysis on deformation and stability of tailing dam[J]. Journal of Engineering Geology, 2015, 23(6): 1189-1195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506025.htm

    [15] 成词峰, 徐颖, 郑庭. 混合式堆坝尾矿料的基本性能及沉积规律分析[J]. 青岛理工大学学报, 2018, 39(2): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-QDJG201802008.htm

    CHENG Ci-feng, XU Ying, ZHENG Ting. Properties of tailings and the law of deposition about tailings dam constructed by upstream and centerline methods[J]. Journal of Qingdao University of Technology, 2018, 39(2): 36-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDJG201802008.htm

    [16] 尹光志, 张千贵, 魏作安, 等. 孔隙水运移特性及对尾矿细观结构作用机制试验研究[J]. 岩石力学与工程学报, 2012, 31(1): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201201011.htm

    YIN Guang-zhi, ZHANG Qian-gui, WEI Zuo-an, et al. Experimental study of migration characteristics of pore water and its effect on meso-structure of tailings[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 71-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201201011.htm

    [17] 魏作安, 杨永浩, 赵怀军, 等. 小打鹅尾矿库尾矿堆积坝稳定性研究[J]. 东北大学学报(自然科学版), 2016, 37(4): 589-593. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201604028.htm

    WEI Zuo-an, YANG Yong-hao, ZHAO Huai-jun, et al. Stability of tailings dam of Xiaodae Tailings pond[J]. Journal of Northeastern University(Natural Science), 2016, 37(4): 589-593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201604028.htm

    [18] 冯彦芳, 李顺群, 陈之祥, 等. 基于土体各向异性的雨水入渗渗井试验研究与验证[J]. 长江科学院院报, 2019, 36(3): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201903022.htm

    FENG Yan-fang, LI Shun-qun, CHEN Zhi-xiang, et al. Experimental study and verification of rainwater infiltration well based on soil anisotropy[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(3): 110-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201903022.htm

    [19] 李顺群, 贾红晶, 王杏杏, 等. 轴平移技术在基质吸力测控中的局限性和误差分析[J]. 岩土力学, 2016, 37(11): 3089-3095, 3252. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611007.htm

    LI Shun-qun, JIA Hong-jing, WANG Xing-xing, et al. Limitation and error analysis of axis translation technique for measuring and controlling matric suction[J]. Rock and Soil Mechanics, 2016, 37(11): 3089-3095, 3252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611007.htm

    [20] 王建州, 刘书幸, 周国庆, 等. 深季节冻土地区基坑工程水平冻胀力试验研究[J]. 中国矿业大学学报, 2018, 47(4): 815-821. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804015.htm

    WANG Jian-zhou, LIU Shu-xing, ZHOU Guo-qing, et al. Model experiment on frost-heave force of foundation pit at deepseasonal frozen regions[J]. Journal of China University of Mining & Technology, 2018, 47(4): 815-821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804015.htm

    [21] 蔡正银, 李小梅, 韩林, 等. 考虑级配和颗粒破碎影响的堆石料临界状态研究[J]. 岩土工程学报, 2016, 38(8): 1357-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608001.htm

    CAI Zheng-yin, LI Xiao-mei, HAN Lin, et al. Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357-1364. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608001.htm

    [22]

    ONO K, YU Y, SAWADA Y, et al. Lateral force–displacement prediction for buried pipe under different effective stress condition[J]. International Journal of Geotechnical Engineering, 2017(2): 1-9.

    [23]

    CHUN L I, ZHAO F L, XIU Z G, et al. Testing investigation on effective stress increment of unsaturated sandy soils[J]. Journal of Northeastern University, 2017, 38(8): 1158-1162.

    [24] 张常光, 赵均海, 朱倩. 非饱和土抗剪强度公式分类及总结[J]. 建筑科学与工程学报, 2012, 29(2): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201202016.htm

    ZHANG Chang-guang, ZHAO Jun-hai, ZHU Qian. Classification and summary of shear strength formulae for unsaturated soils[J]. Journal of Architecture and Civil Engineering, 2012, 29(2): 74-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201202016.htm

    [25] 陈星欣, 白冰, 于涛, 等. 粒径和渗流速度对多孔介质中悬浮颗粒迁移和沉积特性的耦合影响[J]. 岩石力学与工程学报, 2013, 32(增刊1): 2840-2845. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1033.htm

    CHEN Xing-xin, BAI Bing, YU Tao, et al. Coupled effects of particle size and flow rate on characteristics of particle transportation and deposition in porous media[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2840-2845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1033.htm

  • 期刊类型引用(1)

    1. 姬欧鸣,胡雪飞,刘长明,晏祥智. 循环荷载饱和风积土累积塑性变形模型. 土木工程与管理学报. 2021(02): 152-159 . 百度学术

    其他类型引用(4)

图(6)  /  表(4)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  82
  • PDF下载量:  194
  • 被引次数: 5
出版历程
  • 收稿日期:  2019-09-03
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-06-30

目录

    /

    返回文章
    返回