• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

非饱和土的峰值强度特性及破坏包线模型

徐筱, 蔡国庆, 李舰, 赵成刚, 赵春雷

徐筱, 蔡国庆, 李舰, 赵成刚, 赵春雷. 非饱和土的峰值强度特性及破坏包线模型[J]. 岩土工程学报, 2020, 42(7): 1211-1219. DOI: 10.11779/CJGE202007004
引用本文: 徐筱, 蔡国庆, 李舰, 赵成刚, 赵春雷. 非饱和土的峰值强度特性及破坏包线模型[J]. 岩土工程学报, 2020, 42(7): 1211-1219. DOI: 10.11779/CJGE202007004
XU Xiao, CAI Guo-qing, LI Jian, ZHAO Chen-gang, ZHAO Chun-lei. Peak strength characteristics and failure envelope model of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1211-1219. DOI: 10.11779/CJGE202007004
Citation: XU Xiao, CAI Guo-qing, LI Jian, ZHAO Chen-gang, ZHAO Chun-lei. Peak strength characteristics and failure envelope model of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1211-1219. DOI: 10.11779/CJGE202007004

非饱和土的峰值强度特性及破坏包线模型  English Version

基金项目: 

国家自然科学基金项目 51722802

国家自然科学基金项目 51678041

国家自然科学基金项目 51722802

国家自然科学基金项目 U1834206

北京市自然科学基金项目 8202038

山西省交通运输厅科研项目 2017-1-6

详细信息
    作者简介:

    徐筱(1991—),男,博士,主要从事非饱和土强度方面的研究工作。E-mail:13115267@bjtu.edu.cn

    通讯作者:

    蔡国庆, E-mail:guoqing.cai@bjtu.edu.cn

  • 中图分类号: TU43

Peak strength characteristics and failure envelope model of unsaturated soils

  • 摘要: 针对非饱和压实土,在不同含水率下,通过三轴压缩试验及抗拉强度试验,研究了非饱和土的峰值破坏点及破坏包线。基于试验结果,讨论了非饱和土破坏包线模型的构成方法。首先,按照土体的破坏模式,破坏包线可表征为两段Mohr–Coulomb型直线。其次,非饱和状态对峰值强度的影响主要表现为剪胀作用和颗粒间作用力两方面,按照非饱和时峰值强度的主要组成部分及其表示方法,给出了黏聚力–剪胀作用型和颗粒间作用力–剪胀作用型两种物理意义明确的曲线型破坏包线。基于分段线性破坏包线,讨论了曲线型破坏包线参数的确定方法。最后,给出并分析了非饱和时不同含水率下土体的破坏包线及其变化特性。
    Abstract: The peak strengths and failure envelopes of unsaturated compacted soils are investigated via triaxial compression and uniaxial tensile tests over a wide range of water content. Based on the experimental evidence, a method for deriving failure envelope model for unsaturated soils is discussed. Firstly, according to the mode of failure, the failure envelope can be approximated by a bilinear Mohr–Coulomb envelope. Secondly, the effect of unsaturated state on the peak strength can be described in terms of dilatancy and interparticle stress. Then accounting for the primary components of unsaturated peak strength and its description, two curved failure envelopes with clear physical meaning are proposed, named after cohesion-dilatancy and interparticle stress-dilatancy envelope respectively. Based on the piecewise linear failure envelope, the method for determining the parameters of the curved failure envelope is discussed. Finally, the failure envelopes and their variation characteristics under different water contents in unsaturated state are given and analyzed.
  • 图  1   河砂的级配曲线

    Figure  1.   Grain-size distribution curve of sand

    图  2   饱和时的剪切性状

    Figure  2.   Shear behavior at saturation

    图  3   不同围压下的三轴试验结果(w=16%)

    Figure  3.   Results of triaxial tests under different confining pressures (w=16%)

    图  4   不同含水率下的三轴试验结果(σ3=50 kPa)

    Figure  4.   Results of triaxial tests for different water contents (σ3=50 kPa)

    图  5   不同围压下的应力比–剪胀率关系曲线(w=16%)

    Figure  5.   Stress ratio-dilatancy rate curves under different confining pressures (w=16%)

    图  6   抗拉强度和含水率关系曲线

    Figure  6.   Tensile strength characteristic curve as a function of water content

    图  7   三轴试样破坏形式

    Figure  7.   Failure modes of triaxial samples

    图  8   分段线性峰值应力圆包络线(w=16%)

    Figure  8.   Piecewise linear envelopes of peak stress circle (w=16%)

    图  9   曲线型破坏包线(w=16%)

    Figure  9.   Curved failure envelopes (w=16%)

    图  10   不同含水率下的破坏包线

    Figure  10.   Failure envelopes under different water contents

    表  1   土体的物理特性

    Table  1   Physical properties of soils

    土的工程分类相对密度Gs 液限wL/% 塑限wp/% 塑性指数Ip 最大干密度ρd/(gcm3)最优含水量wopt/% 
    MHS2.725738191.336
    下载: 导出CSV

    表  2   破坏包线参数及拟合结果

    Table  2   Parameters for failure envelopes and fitting results

    含水率/%线Ⅰ线Ⅱc/kPa(c=c1)σs /kPaΔφ /rad (Δφ= φ1φst)黏聚力–剪胀作用型颗粒间作用力–剪胀作用型
    c1/kPaφ1/radc2/kPaφ2/radR2PN/kPaR2PN/kPaR2
    419.661.169347.950.73750.998719.66-8.340.5553101.260.9998133.070.9995
    830.801.154869.160.74540.998930.80-13.610.5408141.600.9999198.530.9991
    1240.141.129684.590.73910.998640.14-18.950.5156169.800.9998251.610.9984
    1647.161.1447108.900.68020.997347.16-21.400.5307158.600.9990245.160.9968
    2044.111.131498.370.68610.997444.11-20.730.5174150.560.9992233.080.9969
    2440.931.149689.690.69870.999840.93-18.340.5356135.290.9999207.420.9986
    2836.311.137082.240.71050.996136.31-16.820.5230144.340.9986212.260.9968
    3233.711.147176.440.65971.000033.71-15.200.533195.060.9999146.890.9985
    3623.471.151158.930.65710.997723.47-10.480.537177.640.9992112.060.9978
    下载: 导出CSV
  • [1] 陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm

    CHEN Zheng-han, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm

    [2] 赵成刚, 白冰. 土力学原理[M]. 2版.北京: 清华大学出版社, 2017: 6-7, 190.

    ZHAO Cheng-gang, BAI Bing. Fundamentals of Soil Mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2017: 6-7, 190. (in Chinese)

    [3] 关德斌. 土的格里菲斯–莫尔联合抗裂强度理论[R]. 济南: 山东省水利科学研究所, 1983.

    GUAN De-bin. Griffith-Mohr Joint Crack Strength Theory of Soil[R]. Jinan: Water Resources Research Institute of Shandong Provincial, 1983. (in Chinese)

    [4] 邢义川, 骆亚生, 李振. 黄土的断裂破坏强度[J]. 水力发电学报, 1999(4): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB199904003.htm

    XING Yi-chuan, LUO Ya-sheng, LI Zhen. The rupture failure strength of loess[J]. Journal of Hydroelectric Engineering, 1999(4): 39-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB199904003.htm

    [5] 李荣建, 刘军定, 郑文, 等. 基于结构性黄土抗拉和抗剪特性的双线性强度及其应用[J]. 岩土工程学报, 2013, 35(增刊2): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2042.htm

    LI Rong-jian, LIU Jun-ding, ZHENG Wen, et al. A bilinear strength formula for structured loess based on tensile strength and shear strength and its application[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 247-252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2042.htm

    [6] 戴自航, 刘志伟, 刘成禹, 等. 考虑张拉与剪切破坏的土坡稳定数值分析[J]. 岩石力学与工程学报, 2008, 27(2): 375-382. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200802025.htm

    DAI Zi-hang, LIU Zhi-wei, LIU Cheng-yu, et al. Numerical analysis of soil slope stability considering tension and shear failures[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 375-382. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200802025.htm

    [7]

    TOYOTA H, NAKAMURA K, SRAMOON W. Failure criterion of unsaturated soil considering tensile stress under three-dimensional stress conditions[J]. Soils and Foundations, 2004, 44(5): 1-13. doi: 10.3208/sandf.44.5_1

    [8]

    VESGA L F. Direct tensile-shear test (DTS) on unsaturated kaolinite clay[J]. Geotechnical Testing Journal, 2009, 32(5): 397-409.

    [9]

    YIN P, VANAPALLI S K. Model for predicting the tensile strength of unsaturated cohesionless soils[J]. Canadian Geotechnical Journal, 2018, 55(9).

    [10]

    YIN P, VANAPALLI S K. Prediction of tensile strength of compacted soils: a review[C]//Proceedings of the 7th International Conference on Unsaturated Soils. HongKong, China, 2018.

    [11] 岳中琦, 徐前. 现今斜坡工程安全设计理论的根本缺陷与灾难后果[J]. 岩土工程学报, 2014, 36(9): 1601-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409008.htm

    YUE Zhong-qi, XU Qian. Fundamental drawbacks and disastrous consequences of current geotechnical safety design theories for slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1601-1606. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409008.htm

    [12] 汤连生, 桑海涛, 罗珍贵, 等. 土体抗拉张力学特性研究进展[J]. 地球科学进展, 2015, 30(3): 297-309. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201503004.htm

    TANG Lian-sheng, SANG Hai-tao, LUO Zhen-gui, et al. Advances in research on the mechanical behavior of the tensile strength of soils[J]. Advances in Earth Science, 2015, 30(3): 297-309. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201503004.htm

    [13]

    MAKSIMOVIC M. Nonlinear failure envelope for soils[J]. Journal of Geotechnical Engineering, 1989, 115(4): 581-586.

    [14]

    MAKSIMOVIC M. A family of nonlinear failure envelopes for non-cemented soils and rock discontinuities[J]. The Electronic Journal of Geotechnical Engineering, 1996(1): 1-36.

    [15]

    SHENG D C. Review of fundamental principles in modelling unsaturated soil behaviour[J]. Computers and Geotechnics, 2011, 38(6): 757-776.

    [16]

    LU N, LIKOS W J. Suction stress characteristic curve for unsaturated soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(2): 131-142.

    [17]

    ZHAN L T, NG C W W. Shear strength characteristics of an unsaturated expansive clay[J]. Canadian Geotechnical Journal, 2006, 43(7): 751-763.

    [18]

    HOSSAIN M D A, YIN J H. Shear strength and dilative characteristics of an unsaturated compacted completely decomposed granite soil[J]. Canadian Geotechnical Journal, 2010, 47(10): 1112-1126.

    [19] 土工试验规程:SL237—1999[S]. 1999.

    Specification of Soil Test: SL237—1999[S]. 1999. (in Chinese)

    [20] 徐筱, 蔡国庆, 李舰, 等. 低应力及拉应力条件下非饱和土强度及剪胀特性[J]. 岩石力学与工程学报, 2018, 37(8): 1933-1942. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808016.htm

    XU Xiao, CAI Guo-qing, LI Jian. The strength and dilatancy characteristics of unsaturated soil at low and tensile stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8): 1933-1942. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808016.htm

    [21]

    NG C W W, ZHAN L T, CUI Y J. A new simple system for measuring volume changes in unsaturated soils[J]. Canadian Geotechnical Journal, 2002, 39(3): 757-764.

    [22] 徐筱, 赵成刚. 高吸力下黏性土的抗剪强度和体变特性[J]. 岩土力学, 2018, 39(5): 1598-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805007.htm

    XU Xiao, ZHAO Cheng-gang. Shear strength and volume change behavior of clay-rich soil at high suctions[J]. Rock and Soil Mechanics, 2018, 39(5): 1598-1610. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805007.htm

    [23] 蔡国庆, 车睿杰, 孔小昂, 等. 非饱和砂土抗拉强度的试验研究[J]. 水利学报, 2017, 48(5): 623-630. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201705014.htm

    CAI Guo-qing, CHE Rui-jie, KONG Xiaoang, et al. Experimental investigation on tensile strength of unsaturated fine sands[J]. Journal of Hydraulic Engineering, 2017, 48(5): 623-630. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201705014.htm

    [24]

    LU N, WU B, TAN C P. Tensile strength characteristics of unsaturated sands[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2007, 133(2): 144-154.

    [25]

    TANG C S, PEI X J, WANG D Y, et al. Tensile strength of compacted clayey soil[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2014, 141(4): 04014122.

    [26]

    LU N, KIM T H, STURE S, et al. Tensile strength of unsaturated sand[J]. Journal of Engineering Mechanics, 2009, 135(12): 1410-1419.

    [27]

    BOLTON M D. Strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65-78.

    [28] 徐筱, 赵成刚, 蔡国庆. 区分毛细和吸附作用的非饱和土抗剪强度模型[J]. 岩土力学, 2018, 39(6): 2059-2064, 2072. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806018.htm

    XU Xiao, ZHAO Cheng-gang, CAI Guo-qing. Shear strength of unsaturated soils considering capillary and adsorptive mechanisms[J]. Rock and Soil Mechanics, 2018, 39(6): 2059-2064, 2072. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806018.htm

    [29]

    BAKER R, FRYDMAN S. Unsaturated soil mechanics: critical review of physical foundations[J]. Engineering Geology, 2009, 106(1/2): 26-39.

    [30]

    LU N, LIKOS W J. Origin of cohesion and its dependence on saturation for granular media[C]//The Fifth Biot Conference on Poromechanics. Vienna: American Society of Civil Engineers, 2014: 1669-1675.

图(10)  /  表(2)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  41
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-29
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-06-30

目录

    /

    返回文章
    返回