Peak strength characteristics and failure envelope model of unsaturated soils
-
摘要: 针对非饱和压实土,在不同含水率下,通过三轴压缩试验及抗拉强度试验,研究了非饱和土的峰值破坏点及破坏包线。基于试验结果,讨论了非饱和土破坏包线模型的构成方法。首先,按照土体的破坏模式,破坏包线可表征为两段Mohr–Coulomb型直线。其次,非饱和状态对峰值强度的影响主要表现为剪胀作用和颗粒间作用力两方面,按照非饱和时峰值强度的主要组成部分及其表示方法,给出了黏聚力–剪胀作用型和颗粒间作用力–剪胀作用型两种物理意义明确的曲线型破坏包线。基于分段线性破坏包线,讨论了曲线型破坏包线参数的确定方法。最后,给出并分析了非饱和时不同含水率下土体的破坏包线及其变化特性。Abstract: The peak strengths and failure envelopes of unsaturated compacted soils are investigated via triaxial compression and uniaxial tensile tests over a wide range of water content. Based on the experimental evidence, a method for deriving failure envelope model for unsaturated soils is discussed. Firstly, according to the mode of failure, the failure envelope can be approximated by a bilinear Mohr–Coulomb envelope. Secondly, the effect of unsaturated state on the peak strength can be described in terms of dilatancy and interparticle stress. Then accounting for the primary components of unsaturated peak strength and its description, two curved failure envelopes with clear physical meaning are proposed, named after cohesion-dilatancy and interparticle stress-dilatancy envelope respectively. Based on the piecewise linear failure envelope, the method for determining the parameters of the curved failure envelope is discussed. Finally, the failure envelopes and their variation characteristics under different water contents in unsaturated state are given and analyzed.
-
Keywords:
- unsaturated soil /
- crack failure /
- shear failure /
- failure envelope /
- dilatancy /
- interparticle stress
-
-
表 1 土体的物理特性
Table 1 Physical properties of soils
土的工程分类 相对密度 Gs 液限 wL/% 塑限 wp/% 塑性指数 Ip 最大干密度 ρd/(g⋅cm−3) 最优含水量 wopt/% MHS 2.72 57 38 19 1.3 36 表 2 破坏包线参数及拟合结果
Table 2 Parameters for failure envelopes and fitting results
含水率/% 线Ⅰ 线Ⅱ c/kPa(c=c1) σs /kPaΔφ /rad (Δφ= φ1−φst )黏聚力–剪胀作用型 颗粒间作用力–剪胀作用型 c1/kPa φ1/rad c2/kPa φ2/rad R2 PN /kPaR2 PN /kPaR2 4 19.66 1.1693 47.95 0.7375 0.9987 19.66 -8.34 0.5553 101.26 0.9998 133.07 0.9995 8 30.80 1.1548 69.16 0.7454 0.9989 30.80 -13.61 0.5408 141.60 0.9999 198.53 0.9991 12 40.14 1.1296 84.59 0.7391 0.9986 40.14 -18.95 0.5156 169.80 0.9998 251.61 0.9984 16 47.16 1.1447 108.90 0.6802 0.9973 47.16 -21.40 0.5307 158.60 0.9990 245.16 0.9968 20 44.11 1.1314 98.37 0.6861 0.9974 44.11 -20.73 0.5174 150.56 0.9992 233.08 0.9969 24 40.93 1.1496 89.69 0.6987 0.9998 40.93 -18.34 0.5356 135.29 0.9999 207.42 0.9986 28 36.31 1.1370 82.24 0.7105 0.9961 36.31 -16.82 0.5230 144.34 0.9986 212.26 0.9968 32 33.71 1.1471 76.44 0.6597 1.0000 33.71 -15.20 0.5331 95.06 0.9999 146.89 0.9985 36 23.47 1.1511 58.93 0.6571 0.9977 23.47 -10.48 0.5371 77.64 0.9992 112.06 0.9978 -
[1] 陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm CHEN Zheng-han, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm
[2] 赵成刚, 白冰. 土力学原理[M]. 2版.北京: 清华大学出版社, 2017: 6-7, 190. ZHAO Cheng-gang, BAI Bing. Fundamentals of Soil Mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2017: 6-7, 190. (in Chinese)
[3] 关德斌. 土的格里菲斯–莫尔联合抗裂强度理论[R]. 济南: 山东省水利科学研究所, 1983. GUAN De-bin. Griffith-Mohr Joint Crack Strength Theory of Soil[R]. Jinan: Water Resources Research Institute of Shandong Provincial, 1983. (in Chinese)
[4] 邢义川, 骆亚生, 李振. 黄土的断裂破坏强度[J]. 水力发电学报, 1999(4): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB199904003.htm XING Yi-chuan, LUO Ya-sheng, LI Zhen. The rupture failure strength of loess[J]. Journal of Hydroelectric Engineering, 1999(4): 39-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB199904003.htm
[5] 李荣建, 刘军定, 郑文, 等. 基于结构性黄土抗拉和抗剪特性的双线性强度及其应用[J]. 岩土工程学报, 2013, 35(增刊2): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2042.htm LI Rong-jian, LIU Jun-ding, ZHENG Wen, et al. A bilinear strength formula for structured loess based on tensile strength and shear strength and its application[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 247-252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2042.htm
[6] 戴自航, 刘志伟, 刘成禹, 等. 考虑张拉与剪切破坏的土坡稳定数值分析[J]. 岩石力学与工程学报, 2008, 27(2): 375-382. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200802025.htm DAI Zi-hang, LIU Zhi-wei, LIU Cheng-yu, et al. Numerical analysis of soil slope stability considering tension and shear failures[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 375-382. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200802025.htm
[7] TOYOTA H, NAKAMURA K, SRAMOON W. Failure criterion of unsaturated soil considering tensile stress under three-dimensional stress conditions[J]. Soils and Foundations, 2004, 44(5): 1-13. doi: 10.3208/sandf.44.5_1
[8] VESGA L F. Direct tensile-shear test (DTS) on unsaturated kaolinite clay[J]. Geotechnical Testing Journal, 2009, 32(5): 397-409.
[9] YIN P, VANAPALLI S K. Model for predicting the tensile strength of unsaturated cohesionless soils[J]. Canadian Geotechnical Journal, 2018, 55(9).
[10] YIN P, VANAPALLI S K. Prediction of tensile strength of compacted soils: a review[C]//Proceedings of the 7th International Conference on Unsaturated Soils. HongKong, China, 2018.
[11] 岳中琦, 徐前. 现今斜坡工程安全设计理论的根本缺陷与灾难后果[J]. 岩土工程学报, 2014, 36(9): 1601-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409008.htm YUE Zhong-qi, XU Qian. Fundamental drawbacks and disastrous consequences of current geotechnical safety design theories for slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1601-1606. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409008.htm
[12] 汤连生, 桑海涛, 罗珍贵, 等. 土体抗拉张力学特性研究进展[J]. 地球科学进展, 2015, 30(3): 297-309. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201503004.htm TANG Lian-sheng, SANG Hai-tao, LUO Zhen-gui, et al. Advances in research on the mechanical behavior of the tensile strength of soils[J]. Advances in Earth Science, 2015, 30(3): 297-309. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201503004.htm
[13] MAKSIMOVIC M. Nonlinear failure envelope for soils[J]. Journal of Geotechnical Engineering, 1989, 115(4): 581-586.
[14] MAKSIMOVIC M. A family of nonlinear failure envelopes for non-cemented soils and rock discontinuities[J]. The Electronic Journal of Geotechnical Engineering, 1996(1): 1-36.
[15] SHENG D C. Review of fundamental principles in modelling unsaturated soil behaviour[J]. Computers and Geotechnics, 2011, 38(6): 757-776.
[16] LU N, LIKOS W J. Suction stress characteristic curve for unsaturated soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(2): 131-142.
[17] ZHAN L T, NG C W W. Shear strength characteristics of an unsaturated expansive clay[J]. Canadian Geotechnical Journal, 2006, 43(7): 751-763.
[18] HOSSAIN M D A, YIN J H. Shear strength and dilative characteristics of an unsaturated compacted completely decomposed granite soil[J]. Canadian Geotechnical Journal, 2010, 47(10): 1112-1126.
[19] 土工试验规程:SL237—1999[S]. 1999. Specification of Soil Test: SL237—1999[S]. 1999. (in Chinese)
[20] 徐筱, 蔡国庆, 李舰, 等. 低应力及拉应力条件下非饱和土强度及剪胀特性[J]. 岩石力学与工程学报, 2018, 37(8): 1933-1942. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808016.htm XU Xiao, CAI Guo-qing, LI Jian. The strength and dilatancy characteristics of unsaturated soil at low and tensile stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8): 1933-1942. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808016.htm
[21] NG C W W, ZHAN L T, CUI Y J. A new simple system for measuring volume changes in unsaturated soils[J]. Canadian Geotechnical Journal, 2002, 39(3): 757-764.
[22] 徐筱, 赵成刚. 高吸力下黏性土的抗剪强度和体变特性[J]. 岩土力学, 2018, 39(5): 1598-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805007.htm XU Xiao, ZHAO Cheng-gang. Shear strength and volume change behavior of clay-rich soil at high suctions[J]. Rock and Soil Mechanics, 2018, 39(5): 1598-1610. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805007.htm
[23] 蔡国庆, 车睿杰, 孔小昂, 等. 非饱和砂土抗拉强度的试验研究[J]. 水利学报, 2017, 48(5): 623-630. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201705014.htm CAI Guo-qing, CHE Rui-jie, KONG Xiaoang, et al. Experimental investigation on tensile strength of unsaturated fine sands[J]. Journal of Hydraulic Engineering, 2017, 48(5): 623-630. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201705014.htm
[24] LU N, WU B, TAN C P. Tensile strength characteristics of unsaturated sands[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2007, 133(2): 144-154.
[25] TANG C S, PEI X J, WANG D Y, et al. Tensile strength of compacted clayey soil[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2014, 141(4): 04014122.
[26] LU N, KIM T H, STURE S, et al. Tensile strength of unsaturated sand[J]. Journal of Engineering Mechanics, 2009, 135(12): 1410-1419.
[27] BOLTON M D. Strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65-78.
[28] 徐筱, 赵成刚, 蔡国庆. 区分毛细和吸附作用的非饱和土抗剪强度模型[J]. 岩土力学, 2018, 39(6): 2059-2064, 2072. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806018.htm XU Xiao, ZHAO Cheng-gang, CAI Guo-qing. Shear strength of unsaturated soils considering capillary and adsorptive mechanisms[J]. Rock and Soil Mechanics, 2018, 39(6): 2059-2064, 2072. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806018.htm
[29] BAKER R, FRYDMAN S. Unsaturated soil mechanics: critical review of physical foundations[J]. Engineering Geology, 2009, 106(1/2): 26-39.
[30] LU N, LIKOS W J. Origin of cohesion and its dependence on saturation for granular media[C]//The Fifth Biot Conference on Poromechanics. Vienna: American Society of Civil Engineers, 2014: 1669-1675.