Vibration attenuation and application of composition materials of periodic structures
-
摘要: 土木工程结构的传统减振控制技术通过降低材料的刚度和增加阻尼的方法,所用材料多为橡胶类产品,橡胶产品因使用寿命的限制,又不便更换,其后续减振效果显著下降。基于周期性结构复合材料的振动传播特性,通过室内试验验证了周期性结构复合材料的带隙特征,通过建立的地铁周期性结构复合道床理论模型进行计算,验证了一种新型周期性结构高分子混凝土道床的减振效果。这为工程结构的长效减振与应用提供了新的技术途径。Abstract: In order to isolate vibration, the conventional attenuation method is to decease the stiffness and to increase the damp in the civil engineering structures. But those materials are almost rubber products. However, the rubber products will be easy to degenerate and not be conveniently exchanged because their service life is limited, and the durability of isolation of the rubber products will be obviously affected. The propagation characteristics of elastic wave in composite materials are introduced. Their band gap periodic structures are validated by laboratory tests. The model of metro bed of the composite materials of periodic structures is derived by the theoretical method. The laboratory and calculated results demonstrate that the new type high polymer concrete metro bed material has obviously attenuation features for the real metro vibration signal as inputting signal. This study will provide the theoretical foundation and new technology path for long-term vibration attenuation of engineering structures.
-
Keywords:
- vibration attenuation /
- periodic structure /
- metro bed /
- high polymer concrete
-
-
-
[1] LEONARD Meirovitch. Dynamics and Control of Structures[M]. New York: John Willey & Sons Inc, 1990.
[2] 欧进萍. 结构振动控制–主动、被动和智能控制[M]. 北京: 科学出版社, 2003. OU Jin-ping. Control for Structural Vibration-Active, Semi-Active and Intelligent Control[M]. Beijing: Science Press, 2003. (in Chinese)
[3] TINARD V, NGUYEN Q T, FOND C. Experimental study on high damping rubber under combined action of compression and shear[J]. Journal of Engineering Materials and Technology, 2015, 137(1): 11007. doi: 10.1115/1.4028891
[4] PRASERTSRI S, RATTANASOM N. Mechanical and damping properties of silica/natural rubber composites prepared from latex system[J]. Polymer Testing, 2011, 30(5): 515-526. doi: 10.1016/j.polymertesting.2011.04.001
[5] XIANG P, ZHAO X Y, XIAO D L, et al. The structure and dynamic properties of nitrile-butadiene rubber/poly (vinyl chloride)/hindered phenol crosslinked composites[J]. Journal of Applied Polymer Science, 2008, 109(1): 106-114. doi: 10.1002/app.27337
[6] 高世兵. 钢弹簧浮置板减振轨道在城市地铁中的应用[J]. 铁道工程学报, 2008, 25(3): 88-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200803018.htm GAO Shi-bing. Application of floating slab damping roadbed with steel spring in metro[J]. Journal of Railway Engineering Society, 2008, 25(3): 88-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200803018.htm
[7] 邓玉姝, 夏禾, 善田康雄, 等. 城市轨道交通梯形轨枕轨道高架桥梁试验研究[J]. 工程力学, 2011, 28(3): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201103009.htm DENG Yu-shu, XIA He, ZENDA Ya-suo, et al. Experimental study of ladder track on a rail transit elevated bridge[J]. Engineering Mechanics, 2011, 28(3): 49-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201103009.htm
[8] 任静, 姜坚白. 钢弹簧浮置板道床在城市铁路西直门车站的应用[J]. 铁道标准设计, 2002(9): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200209006.htm RENG Jing, JIANG Jian-bai. The application of steel spring floating slab track bed to Xizhimen Station of urban rail system[J]. Railway Standard Design, 2002(9): 14-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200209006.htm
[9] 张宝才, 徐祯祥. 螺旋钢弹簧浮置板隔振技术在城市轨道交通减振降噪上的应用[J]. 中国铁道科学, 2002, 23(3): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200203014.htm ZHANG Bao-cai, XU Zhen-xiang. Applications of the steel spring floating track bed for vibration and noise control in urban rail traffic[J]. China Railway Science, 2002, 23(3): 68-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200203014.htm
[10] SIGALAS M M, ECONOMOU E N. Elastic and acoustic wave band structure[J]. Journal of Sound and Vibration,1992, 158(2): 377-382. doi: 10.1016/0022-460X(92)90059-7
[11] KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band-structure of petiodic elastic composites[J]. Phys Rev Lett, 1993, 71(13): 2022-2025. doi: 10.1103/PhysRevLett.71.2022
[12] LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. SCIENCE, 2000, 289(5485): 1734-1736. doi: 10.1126/science.289.5485.1734
[13] GOFFAUX C, Sdnchez-Dehesa J, YEYATI A L, et al. Evidence of fano-like interference phenomena in locally resonant materials[J]. Physical Review Letters, 2002, 88(22): 1-4.
[14] GOFFAUX C, Sanchez-Dehesa J. Two-dimensional phononic crystals studied using a variational method: application to lattices of locally resonant materials[J]. Physical Review B, 2003, 67(14): 144301.
[15] HIRSEKORN M, DELSANTO P P, LEUNG A C, et al. Elastic wave propagation in locally resonant sonic material: comparison between local interaction simulation approach and modal analysis[J]. Journal of Applied Physics, 2006, 99(12): 124912.
[16] WU T, WU T, HSU J. Waveguiding and frequency selection of Lamb waves in a plate with a periodic stubbed surface[J]. Physical Review B, 2009, 79(10): 104306.
[17] XIANG H, SHI Z. Analysis of flexural vibration band gaps in periodic beams using differential quadrature method[J]. Computers & Structures, 2009, 87(23): 1559-1566.
[18] XIANG H J, SHI Z F. Vibration attenuation in periodic composite Timoshenko beams on Pasternak foundation[J]. Structural Engineering and Mechanics, 2011, 40(3): 373-392.
[19] 石志飞, 程志宝, MOYL . 周期性隔震基础的理论与实验研究进展[J]. 地震工程与工程振动, 2014, 34(增刊1): 763-768. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC2014S1120.htm SHI Zhi-fei, CHENG Zhi-bao, MO Yi-lung. Theoretical and experimental studies of periodic foundations[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(S1): 763-768. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC2014S1120.htm
[20] QIAN D H, SHI Z Y. Using PWE/FE method to calculate the band structures of the semi-infinite beam-like PCs: Periodic in z-direction and finite in x-y plane[J]. Physics Letters A, 2017, 381(17): 1516-1524.
[21] WANG P, YI Q, ZHAO C, et al. Wave propagation in periodic track structures: band-gap behaviours and formation mechanisms[J]. Archive of Applied Mechanics, 2017, 87(3): 503-519.
[22] LOU J, HE L W, YANG J, et al. Wave propagation in viscoelastic phononic crystal rods with internal resonators[J]. Applied Acoustics, 2018, 141: 382-392.
[23] HUSSEIN M I, KHAJEHTOURIAN R. Nonlinear bloch waves and balance between hardening and softening dispersion[J]. Proceedings of the Royal Society A- Mathematical Physical and Engineering Sciences, 2018, 474(1): 1-19.
[24] LIU M, ZHU W D. Modeling and analysis of nonlinear wave propagation in one-dimensional phononic structures[J]. Journal of Vibration and Acoustics-Transactions of the ASME, 2018, 140(6): 061010.
[25] LI C, MIAO L C, YOU Q, et al. Eects of material parameters on the band gaps of two-dimensional three-component phononic crystals[J]. Applied Physics A, 2019, 125(3): 170.