Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土中大直径单桩的长期水平循环加载累积变形

张陈蓉, 朱治齐, 于锋, 王博伟, 黄茂松

张陈蓉, 朱治齐, 于锋, 王博伟, 黄茂松. 砂土中大直径单桩的长期水平循环加载累积变形[J]. 岩土工程学报, 2020, 42(6): 1076-1084. DOI: 10.11779/CJGE202006011
引用本文: 张陈蓉, 朱治齐, 于锋, 王博伟, 黄茂松. 砂土中大直径单桩的长期水平循环加载累积变形[J]. 岩土工程学报, 2020, 42(6): 1076-1084. DOI: 10.11779/CJGE202006011
ZHANG Chen-rong, ZHU Zhi-qi, YU Feng, WANG Bo-wei, HUANG Mao-song. Accumulative displacement of long-term cyclic laterally loaded monopiles with large diameter sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1076-1084. DOI: 10.11779/CJGE202006011
Citation: ZHANG Chen-rong, ZHU Zhi-qi, YU Feng, WANG Bo-wei, HUANG Mao-song. Accumulative displacement of long-term cyclic laterally loaded monopiles with large diameter sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1076-1084. DOI: 10.11779/CJGE202006011

砂土中大直径单桩的长期水平循环加载累积变形  English Version

基金项目: 

国家自然科学基金项目 51779175

上海市科委科研计划项目 18DZ1202104

详细信息
    作者简介:

    张陈蓉(1982—),博士,副研究员,主要从事桩基及地下工程研究。E-mail: zcrong33@tongji.edu.cn

    通讯作者:

    黄茂松, E-mail: mshuang@tongji.edu.cn

  • 中图分类号: TU470

Accumulative displacement of long-term cyclic laterally loaded monopiles with large diameter sand

  • 摘要: 海上风电在风载、波浪荷载等长期水平循环荷载作用下的累积变形问题备受重视,因其过大会导致风机无法正常工作。考虑了桩周砂土的循环加载特性对海上风电大直径单桩基础的水平循环响应加以研究。首先采用R-O加载曲线和修正Masing准则构建砂土的加卸载应力应变曲线,基于砂土轴向累积应变显式公式推导了砂土加卸载割线刚度演化模型。其次在长期水平循环受荷桩的有限元数值模拟中对该演化模型加以实现,通过与文献的离心模型试验结果进行对比分析,验证了砂土加卸载刚度演化模型用于水平循环受荷单桩响应的合理性。进一步开展了单桩不同埋深的参数分析,探讨了埋深条件对桩顶累积转角发展的影响。研究表明,基于砂土加卸载割线刚度演化模型的有限元分析能够合理模拟砂土中水平循环加载条件下单桩桩顶累积转角的长期演化规律,为分析海上风电的长期循环响应提供了理论基础。
    Abstract: The accumulative displacement of offshore wind power under long-term cyclic lateral loads from wind and wave loads attracts a lot of attention, for it may lead to the malfunction of a wind turbine. Considering the cyclic loading characteristics of sandy soil around piles, the lateral cyclic response of monopile for offshore wind power is investigated. The R-O loading curve and modified Masing rule are used to construct loading and unloading stress-strain curves of sand. Based on the explicit equation for cyclic accumulative axial strain of sand, a cyclic evolution model for secant stiffness of sand is derived, and it is applied in the FE analysis. By comparing with the published centrifuge test results of a laterally loaded monopile in sand, the rationality of the evolution model is verified. A parametric analysis considering different embedment lengths of the pile is also undertaken. It is believed that the FE analysis with the evolution model for secant stiffness of sand can rationally simulate the development of the accumulative rotation of a horizontal cyclic loaded monopile, which provides theoretical support for the design of the cyclic response of wind turbines.
  • 图  1   R-O模型应力应变关系曲线示意图

    Figure  1.   Stress-strain relationship of R-O model

    图  2   滞回圈及初始刚度示意图

    Figure  2.   Diagram of hysteresis loop and initial stiffness

    图  3   稳定时应力应变关系示意图

    Figure  3.   Diagram of stress-strain relationship in a stable state

    图  4   滞回圈及加卸载割线刚度示意图

    Figure  4.   Diagram of hysteresis loop and secant stiffness during loading and unloading

    图  5   循环三轴试验的应力路径示意图

    Figure  5.   Diagram of stress path of cyclic triaxial tests

    图  6   滞回圈的计算值与试验值的对比

    Figure  6.   Comparison between calculated and test hysteresis loops

    图  7   加卸载刚度的计算值与试验值的对比

    Figure  7.   Comparisons between calculated and test loading and unloading stiffnesses

    图  8   轴向应变的计算值与试验值的对比

    Figure  8.   Comparison between calculated and test axial strains

    图  9   有限元模型

    Figure  9.   Finite element model

    图  10   试验S2-1的桩身加载点处静力荷载位移曲线

    Figure  10.   Static load-displacement curve of test s2-1

    图  11   加载点处水平位移峰值与残余值的实测与计算对比(b=0.0386)

    Figure  11.   Comparison between measured and calculated values of peak value and residual value(b=0.0386)

    图  12   加载点处水平位移峰值与残余值实测与计算对比(b=0.1)

    Figure  12.   Comparison between measured and calculated values of peak value and residual value(b=0.1)

    图  13   桩身弯矩随深度分布曲线

    Figure  13.   Distribution of bending moment of pile with depth

    图  14   位移曲线试验与计算结果对比图(b=0.1)

    Figure  14.   Comparison of load-displacement curves(b=0.1)

    图  15   水平循环受荷的桩土模型示意图

    Figure  15.   Diagram of a cyclic horizontal loaded monopile

    图  16   桩顶的累积转角θpN随循环次数N的关系

    Figure  16.   Relationship between cumulative rotation θpN and cyclic number N

    图  17   不同埋深的桩身峰值位移与循环次数N的关系

    Figure  17.   Relationship between peak displacement of pile and cyclic number at different buried depths

  • [1]

    ARANY L, BHATTACHARYA S, MACDONALD J, et al. Design of monopiles for offshore wind turbines in 10 steps[J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 126-152. doi: 10.1016/j.soildyn.2016.09.024

    [2]

    LITTLE RL, BRIAUD JL. Full Scale Cyclic Lateral Load Tests on Six Single Piles in Sand (No. TAMU-RR-5640)[R]. Texas: College Station, 1988.

    [3]

    LONG J, VANNESTE G. Effects of cyclic lateral loads on piles in sand[J]. Journal of Geotechnical Engineering, 1994, 120(1): 225-244. doi: 10.1061/(ASCE)0733-9410(1994)120:1(225)

    [4]

    LIN S S, LIAO J C. Permanent strains of piles in sand due to cyclic lateral loads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 798-802. doi: 10.1061/(ASCE)1090-0241(1999)125:9(798)

    [5]

    LEBLANC C, HOULSBY G T, BYRNE B W. Response of stiff piles in sand to long-term cyclic lateral loading[J]. Géotechnique, 2010, 60(2): 79-90. doi: 10.1680/geot.7.00196

    [6]

    CHEN R P, SUN Y X, ZHU B, et al. Lateral cyclic pile–soil interaction studies on a rigid model monopile[J]. Proceedings of the ICE - Geotechnical Engineering, 2015, 168(2): 120-130. doi: 10.1680/geng.14.00028

    [7]

    ZHU B, BYRNE B W, HOULSBY G T. Long-term lateral cyclic response of suction caisson foundations in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(1): 73-83. doi: 10.1061/(ASCE)GT.1943-5606.0000738

    [8]

    ZHANG C, ZHANG X, HUANG M, et al. Responses of caisson-piles foundations to long-term cyclic lateral load and scouring[J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 62-74. doi: 10.1016/j.soildyn.2018.12.026

    [9]

    ZHU F Y, O'LOUGHLIN C D, BIENEN B, et al. The response of suction caissons to long-term lateral cyclic loading in single-layer and layered seabeds[J]. Géotechnique, 2018, 68(8): 729-741. doi: 10.1680/jgeot.17.P.129

    [10]

    ALLOTEY N, EL NAGGAR M H. A numerical study into lateral cyclic nonlinear soil–pile response[J]. Canadian Geotechnical Journal, 2008, 45(9): 1268-1281. doi: 10.1139/T08-050

    [11]

    HEIDARI M, JAHANANDISH M, EL NAGGAR H, et al. Nonlinear cyclic behavior of laterally loaded pile in cohesive soil[J]. Canadian Geotechnical Journal, 2014, 51(2): 129-143. doi: 10.1139/cgj-2013-0099

    [12]

    MEMARPOUR M M, KIMIAEI M, SHAYANFAR M, et al. Cyclic lateral response of pile foundations in offshore platforms[J]. Computers and Geotechnics, 2012, 42: 180-192. doi: 10.1016/j.compgeo.2011.12.007

    [13]

    GIANNAKOS S, GEROLYMOS N, GAZETAS G. Cyclic lateral response of piles in dry sand: finite element modeling and validation[J]. Computers and Geotechnics, 2012, 44: 116-131. doi: 10.1016/j.compgeo.2012.03.013

    [14]

    BOURGEOIS E, RAKOTONINDRIANA M H J, LE KOUBY A, et al. Three-dimensional numerical modelling of the behaviour of a pile subjected to cyclic lateral loading[J]. Computers and Geotechnics, 2010, 37(7/8): 999-1007.

    [15]

    ACHMUS M, KUO Y S, ABDEL-RAHMAN K. Behavior of monopile foundations under cyclic lateral load[J]. Computers and Geotechnics, 2009, 36(5): 725-735. doi: 10.1016/j.compgeo.2008.12.003

    [16]

    DEPINA I, LE T M H, EIKSUND G, ET AL. Behavior of cyclically loaded monopile foundations for offshore wind turbines in heterogeneous sands[J]. Computers and Geotechnics, 2015, 65: 266-277. doi: 10.1016/j.compgeo.2014.12.015

    [17]

    RAMBERG W, OSGOOD W R. Description of stress-strain curves by three parameters[J]. National Advisory Committee for Aeronautics, 1943: 902.

    [18]

    MASING G. Eigenspannungeu und verfertigung beim Messing[C]//Proceedings of the 2nd International Congress on Applied Mechanics, 1926, Zurich.

    [19]

    PYKE R M. Nonlinear soil models for irregular cyclic loadings[J]. Journal of Geotechnical Engineering Division, 1979, 105(6): 715-726. doi: 10.1061/AJGEB6.0000820

    [20] ZHUZhi-qiLong-Term Displacement Accumulation of Cyclic Laterally Loaded Monopile in SandShanghaiTongji University2018 https://xuewen.cnki.net/CCND-JFRB202211070012.html

    ZHU Zhi-qi. Long-Term Displacement Accumulation of Cyclic Laterally Loaded Monopile in Sand[D]. Shanghai: Tongji University, 2018. (in Chinese)

    [21] 黄茂松, 李进军, 李兴照. 饱和软粘土的不排水循环累积变形特性[J]. 岩土工程学报, 2006, 28(7): 891-895. doi: 10.3321/j.issn:1000-4548.2006.07.016

    HUANG Mao-song, LI Jin-jun, LI Xing-zhao. Cumulative deformation behaviour of soft clay in cyclic undrained tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 891-895. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.07.016

    [22]

    BOLTON M D. The strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65-78. doi: 10.1680/geot.1986.36.1.65

    [23]

    PASTEN C, SHIN H, SANTAMARINA J C. Long-term foundation response to repetitive loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(4): 04013036. doi: 10.1061/(ASCE)GT.1943-5606.0001052

    [24]

    NIEMUNIS A, WICHTMANN T, TRIANTAFYLLIDIS T H. A high-cycle accumulation model for sand[J]. Computers and Geotechnics, 2015, 32(4): 245-263.

    [25]

    ZHU B, LI T, XIONG G, et al. Centrifuge model tests on laterally loaded piles in sand[J]. International Journal of Physical Modelling in Geotechnics, 2016, 16(4): 160-172. doi: 10.1680/jphmg.15.00023

    [26] 王磊, 朱斌, 来向华. 砂土循环累积变形规律与显式计算模型研究[J]. 岩土工程学报, 2015, 37(11): 2024-2029. doi: 10.11779/CJGE201511012

    WANG Lei, ZHU Bin, LAI Xiang-hua. Cyclic accumulative deformation of sand and its explicit model[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2024-2029. (in Chinese) doi: 10.11779/CJGE201511012

图(17)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-11
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-05-31

目录

    /

    返回文章
    返回