• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

非线性渗流对裂隙岩体渗流传热过程的影响

姚池, 邵玉龙, 杨建华, 何忱, 黄帆, 周创兵

姚池, 邵玉龙, 杨建华, 何忱, 黄帆, 周创兵. 非线性渗流对裂隙岩体渗流传热过程的影响[J]. 岩土工程学报, 2020, 42(6): 1050-1058. DOI: 10.11779/CJGE202006008
引用本文: 姚池, 邵玉龙, 杨建华, 何忱, 黄帆, 周创兵. 非线性渗流对裂隙岩体渗流传热过程的影响[J]. 岩土工程学报, 2020, 42(6): 1050-1058. DOI: 10.11779/CJGE202006008
YAO Chi, SHAO Yu-long, YANG Jian-hua, HE Chen, HUANG Fan, ZHOU Chuang-bing. Effect of nonlinear seepage on flow and heat transfer process of fractured rocks[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1050-1058. DOI: 10.11779/CJGE202006008
Citation: YAO Chi, SHAO Yu-long, YANG Jian-hua, HE Chen, HUANG Fan, ZHOU Chuang-bing. Effect of nonlinear seepage on flow and heat transfer process of fractured rocks[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1050-1058. DOI: 10.11779/CJGE202006008

非线性渗流对裂隙岩体渗流传热过程的影响  English Version

基金项目: 

国家自然科学基金项目 U1765207

国家自然科学基金项目 41762020

国家自然科学基金项目 51969015

江西省自然科学基金项目 20181BCD40003

江西省自然科学基金项目 20192ACB20020

江西省自然科学基金项目 20192ACB2102

详细信息
    作者简介:

    姚池(1986—),男,博士,副教授,主要从事裂隙岩体渗流和多物理场耦合等研究工作。E-mail: chi.yao@ncu.edu.cn

    通讯作者:

    杨建华, E-mail: yangjianhua86@ncu.edu.cn

  • 中图分类号: TU45

Effect of nonlinear seepage on flow and heat transfer process of fractured rocks

  • 摘要: 提出了一种裂隙岩体的非线性渗流传热数值模型,首先将Forchheimer方程与雷诺方程耦合得到非线性渗流控制方程,然后结合传热控制方程,考虑裂隙与岩石基质之间的热量交换,研究了非线性渗流对裂隙岩体渗流传热过程的影响。通过与裂隙网络非线性渗流试验数据对比,验证了裂隙岩体非线性渗流模型的有效性。最后,通过二维单裂隙和三维裂隙网络模型进行了非线性渗流传热分析。结果表明:该模型能够比较准确地描述裂隙岩体的非线性渗流特征,随着裂隙开度df的增加,流体的非线性效应不断加强,与达西条件下计算的渗流传热结果的偏差就越大,通过归一化导流系数T/T0确定临界水力梯度Jc,发现裂隙开度对临界水力梯度Jc起到主导性作用,且临界水力梯度Jc与裂隙开度df满足幂函数递减关系;归一化热突破时间t/t0≥1,非线性条件下的稳定期要比线性条件下的稳定期长,并随着裂隙开度和裂隙数量的增大而增大。
    Abstract: A numerical model for nonlinear flow and heat transfer in a fractured rock mass is proposed. First, the Forchheimer equation and the Reynolds equation are coupled to obtain the nonlinear seepage control equation, then combined with the heat transfer control equation, considering the heat exchange between the fracture and the rock matrix, the effect of nonlinear seepage on the flow and heat transfer process of fractured rock mass is studied. The effectiveness of the nonlinear seepage model for fractured rock mass is verified by comparing the experimental data of nonlinear seepage in fracture network. Finally, the nonlinear seepage heat transfer analysis is carried out by two-dimensional single-fracture and three-dimensional fracture network models.The result shows that the model can accurately describe the nonlinear seepage characteristics of fractured rock masses. As the fracture aperture df increases, the nonlinear effects of fluids continue to strengthen, and the deviation between the nonlinear conditions and the seepage heat transfer results under linear conditions is greater. The critical hydraulic gradient Jcis determined by the normalized hydraulic conductivity coefficient T/T0. It is found that the fracture aperture plays a dominant role in the critical hydraulic gradient Jc, and the critical hydraulic gradient Jc and the fracture aperture df satisfy the power function decreasing relationship. The normalized thermal breakthrough time t/t0≥1, and the stability period under nonlinear conditions is longer than the stable period under linear conditions and increases with the increase of the fracture aperture and the number of fractures.
  • 图  1   非达西系数β与JRC关系曲线

    Figure  1.   Relationship between non-Darcy coefficient β and JRC

    图  2   4个交叉裂隙模型

    Figure  2.   Four-intersecting fracture model

    图  3   离散裂隙网络模型

    Figure  3.   Discrete fracture network model

    图  4   4个交叉裂隙模型的试验与数值模拟结果对比

    Figure  4.   Comparison between experimental and numerical simulation results of four-intersecting fracture model

    图  5   离散裂隙网络模型的试验与数值模拟结果对比

    Figure  5.   Comparison between experimental and numerical simulation results of discrete fracture network model

    图  6   二维单裂隙渗流传热模型

    Figure  6.   Two-dimensional single fracture seepage heat transfer model

    图  7   压力梯度-P与流量Q的曲线关系

    Figure  7.   Curve relationship between pressure gradient -P and flow rate Q

    图  8   归一化导流系数T/T0随水力梯度J的变化特征

    Figure  8.   Variation characteristics of normalized hydraulic conductivity T/T0 with hydraulic gradient J

    图  9   临界水力梯度Jc与裂隙开度df的关系

    Figure  9.   Relationship between critical hydraulic gradient Jc and fracture aperture df

    图  10   不同裂隙开度下出口处的流体温度随时间变化曲线

    Figure  10.   Variation of fluid temperature at the outlet with time under different fracture apertures

    图  11   归一化热突破时间t/t0与裂隙开度和水力梯度的关系

    Figure  11.   Relationship among normalized breakthrough time t/t0, fracture aperture and hydraulic gradient

    图  12   裂隙网络模型示意图

    Figure  12.   Schematic diagram of fracture network model

    图  13   压力梯度-P与流量Q的曲线关系

    Figure  13.   Curve relationship between pressure gradient -P and flow rate Q

    图  14   归一化导流系数T/T0随水力梯度J的变化特征

    Figure  14.   Variation characteristics of normalized hydraulic conductivity T/T0 with hydraulic gradient J

    图  15   不同裂隙开度下出口处的流体温度随时间变化

    Figure  15.   Variation of fluid temperature at the outlet with time under different fracture apertures

    图  16   归一化热突破时间t/t0与裂隙开度和水力梯度的关系

    Figure  16.   Relationship among normalized breakthrough time t/t0, fracture aperture and hydraulic gradient

  • [1] 段云星. 干热岩地热资源开采井网优化数值模拟研究[D]. 北京: 中国地质大学, 2017.

    DUAN Yun-xin. Numerical Simulation of Well Pattern Optimization for Hot Dry Rock Geothermal Resources Exploitation[D]. Beijing: China University of Geosciences, 2017. (in Chinese)

    [2]

    LAUWERIE H A. The transport of heat in an oil layer caused by the injection of hot fluid[J]. Applied Scientific Research: Section A, 1955, 5(2/3): 145-150.

    [3] 陈必光, 宋二祥, 程晓辉. 二维裂隙岩体渗流传热的离散裂隙模型数值计算方法[J]. 岩石力学与工程学报, 2014, 33(1): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401005.htm

    CHEN Bi-guang, SONG Er-xiang, CHENG Xiao-hui. Numerical calculation method of discrete fracture model for two-dimensional fractured rock mass seepage and heat transfer[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 43-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401005.htm

    [4] 路威, 项彦勇, 唐超. 填砂裂隙岩体渗流传热模型试验与数值模拟[J]. 岩土力学, 2011, 32(11): 3448-3454. doi: 10.3969/j.issn.1000-7598.2011.11.041

    LU Wei, XIANG Yan-yong, TANG Chao. Model experiment and numerical simulation of flow and heat transfer for sand-filled fractured rock model[J]. Rock and Soil Mechanics, 2011, 32(11): 3448-3454. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.11.041

    [5] 熊峰, 孙昊, 姜清辉, 等. 粗糙岩石裂隙低速非线性渗流模型及试验验证[J]. 岩土力学, 2018, 39(9): 3294-3302, 3312. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201809025.htm

    XIONG Feng, SUN Hao, JIANG Qing-hui, et al. Theoretical model and experimental verification on non-linear flow at low velocity through rough-walled rock fracture[J]. Rock and Soil Mechanics, 2018, 39(9): 3294-3302, 3312. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201809025.htm

    [6]

    BEAR J. Dynamics of Fluids in Porous Media[M]. New York: Eisevier, 1972. 764.

    [7]

    ZIMMERMAN R W, AL-YAARUBI A, PAIN C C, et al. Nonlinear regimes of fluid flow in rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3): 163-169.

    [8] 刘日成, 李博, 蒋宇静, 等. 等效水力隙宽和水力梯度对岩体裂隙网络非线性渗流特性的影响[J]. 岩土力学, 2016, 37(11): 3165-3174. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611016.htm

    LIU Ri-cheng, LI Bo, JIANG Yu-jing, et al. Effects of equivalent hydraulic aperture and hydraulic gradient on nonlinear eepage properties of rock mass fracture networks[J]. Rock and Soil Mechanics, 2016, 37(11): 3165-3174. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611016.htm

    [9] 刘伟, 范爱武, 黄晓明. 多孔介质传热传质理论与应用[M]. 北京: 科学出版社, 2006.

    LIU Wei, FAN Ai-wu, HUANG Xiao-ming. Theory and Application of Heat and Mass Transfer in Porous Media[M]. Beijing: Science Press, 2006. (in Chinese)

    [10]

    SONG X, SHI Y, LI G, et al. Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells[J]. Applied Energy, 2018, 218: 325-337. doi: 10.1016/j.apenergy.2018.02.172

    [11]

    XU C S, DOWD P A, TIAN Z F. A simplified coupled hydro-thermal model for enhanced geothermal systems[J]. Applied Energy, 2015, 140: 135-145. doi: 10.1016/j.apenergy.2014.11.050

    [12] 黄奕斌, 张延军, 于子望, 等. 考虑多级流速下的岩石粗糙单裂隙渗流传热特性试验研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2654-2667. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1007.htm

    HUANG Yi-bin, ZHANG Yan-jun, YU Zi-wang, et al. Experimental study on seepage heat transfer characteristics of rough single crack in rock considering multistage flow velocity[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2654-2667. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1007.htm

    [13] 李正伟, 张延军, 张驰, 等. 花岗岩单裂隙渗流传热特性试验[J]. 岩土力学, 2018, 39(9): 3261-3269. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201809020.htm

    LI Zheng-wei, ZHANG Yan-jun, ZHANG Chi, et al. Experimental study on heat transfer characteristics of single fracture in granite[J]. Rock and Soil Mechanics, 2018, 39(9): 3261-3269. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201809020.htm

    [14] 张驰. 干热岩单裂隙渗流—传热实验与数值模拟研究[D]. 吉林: 吉林大学, 2017.

    ZHANG Chi. Experimental Study and Numerical Simulation of Single Fissure Flow and Heat Transfer in Dry Hot Rock[D]. Jilin: Jilin University, 2017. (in Chinese)

    [15] 李正伟. 干热岩裂隙渗流—传热试验及储层模拟评价研究[D]. 吉林: 吉林大学, 2016.

    LI Zheng-wei. Fracture Seepage-Heat Transfer Test and Reservoir Simulation evaluation of Dry Hot Rock[D]. Jilin: Jilin University, 2016. (in Chinese)

    [16]

    MEI C C, AURIAULT J L. The effect of weak inertia on flow through a porous medium[J]. Journal of Fluid Mechanics, 1991, 222: 647-663.

    [17]

    ZIMMERMAN R W, AL-YAARUBI A, PAIN C C, et al. Non-linear regimes of fluid flow in rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 163-169.

    [18]

    LIU R C, LI B, JIANG Y J. A fractal model based on a new governing equation of fluid flow in fractures for characterizing hydraulic properties of rock fracture networks[J]. Computers & Geotechnics, 2016, 75: 57-68.

    [19]

    LONG J C S, REMER J S, WILSON C R, et al. Networks of discontinuous fractures[J]. Porous Media Equivalents for Resources Research, 1982, 18(3): 645-658.

    [20] 刘杰. 岩体裂隙网络二维非线性渗流特性与模型[D]. 济南: 山东大学, 2019.

    LIU Jie. Two-Dimensional Nonlinear Seepage Characteristics and Model of Rock Mass Fracture Network[D]. Jinan: Shandong University, 2019. (in Chinese)

    [21]

    HUANG N, JIANG Y, LI B, et al. A numerical method for simulation fluid flow through 3-D fracture networks[J]. J Nat Gas Sci Eng, 2016, 33: 1271-1281. doi: 10.1016/j.jngse.2016.06.072.

    [22]

    ZIMMERMAN R W, AL-YAARUBI A, PAIN C C, et al. Non-linear regimes of fluid flow in rock fractures[J]. Int J Rock Mech Min Sci, 2004, 41(3): 163-169. doi: 10.1016/j.ijrmms.2003.12.045.

    [23] 周广磊, 徐涛, 朱万成, 等. 基于温度–应力耦合作用的岩石时效蠕变模型[J]. 工程力学, 2017, 34(10): 1-9, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201710002.htm

    ZHOU Guang-lei, XU Tao, ZHU Wan-cheng, et al. A time-dependent thermo-mechanical creep model of rock[J]. Engineering Mechanics, 2017, 34(10): 1-9, 25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201710002.htm

    [24] 张伟, 曲占庆, 郭天魁, 等. 热应力影响下干热岩水压致裂数值模拟[J]. 岩土力学, 2019, 40(5): 2001-2008. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905045.htm

    ZHANG Wei, QU Zhan-qing, GUO Tian-kui, et al. Numerical simulation of hydraulic fracturing in hot dry rocks under the influence of thermal stress[J]. Rock and Soil Mechanics, 2019, 40(5): 2001-2008. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905045.htm

    [25]

    LI B, LIU R, JIANG Y. Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections[J]. Journal of Hydrology, 2016, 538: 440-453.

    [26]

    CHEN Y F, ZHOU J Q, HU S H, et al. Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures[J]. Journal of Hydrology, 2015, 529: 993-1006.

    [27] 许凯, 雷学文, 孟庆山, 等. 非达西渗流惯性系数研究[J]. 岩石力学与工程学报, 2012, 31(1): 164-170. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201201021.htm

    XU Kai, LEI Xue-wen, MENG Qing-shan, et al. Study of inertial coefficient of non-darcy seepage flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 164-170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201201021.htm

    [28] 周佳庆. 裂隙介质非线性渗流与非费克传输的宏细观机制研究[D]. 武汉: 武汉大学, 2018.

    ZHOU Jia-qing. Mechanisms of Nonlinear Flow and Anomalous Transport in Fractured Media: From Micro to Macro-scale[D]. Wuhan: Wuhan University, 2018. (in Chinese)

  • 期刊类型引用(3)

    1. 李飞龙,姜昌山,蔡国庆,余虔,韩进宝,张合青. 飞机滑行荷载对水泥混凝土道面及下穿通道的动力响应影响. 土木工程学报. 2024(S2): 80-87 . 百度学术
    2. 黄之懿,游庆龙,马靖莲,田帅团,赵志,黄文旭. 飞机轮载作用下沥青道面荷载影响范围分析. 中国科技论文. 2023(08): 890-896+904 . 百度学术
    3. 邓友生,姚志刚,邓明科,李明,李龙,肇慧玲. 温度-荷载作用下新旧混凝土道面接缝力学性能. 西安建筑科技大学学报(自然科学版). 2022(06): 899-905 . 百度学术

    其他类型引用(8)

图(16)
计量
  • 文章访问数:  397
  • HTML全文浏览量:  29
  • PDF下载量:  265
  • 被引次数: 11
出版历程
  • 收稿日期:  2019-10-23
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-05-31

目录

    /

    返回文章
    返回