Weakening laws of rock mass properties in blasting excavation damage zone of high rock slopes
-
摘要: 岩石边坡爆破开挖引起的岩体力学性能劣化对边坡稳定具有不利的影响,Hoek-Brown(H-B)准则是快速估算损伤岩体力学参数的有效途径之一。针对白鹤滩水电站左岸834~750 m高程拱肩槽边坡爆破开挖,通过分析爆破后边坡岩体的声波速度,定量确定了H-B准则中扰动因子D的取值及其随深度的变化规律,在此基础上研究了损伤区内岩体力学参数的弱化规律。研究结果表明:随着岩体深度的增加,扰动因子D线性降低,损伤区内岩体变形模量线性增大,岩体单轴抗压强度、单轴抗拉强度、内摩擦角和黏聚力非线性增大;爆破开挖扰动下岩体单轴抗压强度弱化最为严重,内摩擦角弱化程度最小。研究成果可为边坡稳定性分析与支护设计的岩体力学参数取值提供参考。
-
关键词:
- 岩石边坡 /
- 爆破 /
- 开挖损伤区 /
- Hoek-Brown准则
Abstract: The weakening of rock mass properties caused by blasting excavation has an adverse effect on slope stability. The Hoek-Brown (H-B) criterion is one of the effective approaches to quickly estimate the mechanical properties of the damaged rock mass. For blasting excavation of the left-bank arch spandrel groove slope of Baihetan Hydropower Station at an elevation of 834~750 m, the disturbance factor in the H-B criterion and its variation with the increasing depth are quantified by analyzing the acoustic wave velocities of the damaged rock mass after blasting. Based on this, the weakening laws of the rock mass properties in the damaged zone are studied. The results show that the disturbance factor decreases linearly as the depth into the slope face increases. In this case, the deformation modulus of rock mass increases linearly with an increase in depth. However, the increases are nonlinear in the uniaxial compressive strength, uniaxial tensile strength, internal friction angle and cohesion. Under blasting excavation disturbance, the uniaxial compressive strength is the most seriously weakened, while the internal friction angle is the lightest weakened. The research results can provide reference for the selection of appropriate rock mass parameters with regard to slope stability analysis and support design.-
Keywords:
- rock slope /
- blasting /
- excavation damage zone /
- Hoek-Brown criterion
-
-
表 1 爆破开挖损伤区深度及未损伤岩体的波速
Table 1 Depth of blasting excavation damage zone and acoustic velocity of undamaged rock mass
岩体类别 损伤区深度/m 未损伤岩体波速/(km·s-1) 本文测量值 地勘 建议值 Ⅲ1类玄武岩 2.0 4.54 4.20~4.70 Ⅲ2类玄武岩 3.2 3.94 3.50~4.20 表 2 未损伤岩体的力学参数
Table 2 Mechanical parameters of undamaged rock mass
岩体分类 H-B准则估算值 现场试验建议值 Erm0/GPa σc0/MPa σt0/MPa φ0/(°) c0/MPa Erm0/GPa φ0/(°) c0/MPa Ⅲ1类玄岩 11.2 5.63 0.14 53 1.3 10~12 45~50 1.0~1.2 Ⅲ2类玄岩 8.4 4.22 0.09 51 1.1 8~10 42~45 0.9~1.0 -
[1] 周创兵. 水电工程高陡边坡全生命周期安全控制研究综述[J]. 岩石力学与工程学报, 2013, 32(6): 1081-1093. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201306002.htm ZHOU Chuang-bing. A prospect of researches on life-cycle safety control on high-steep rock slopes in hydropower engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1081-1093. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201306002.htm
[2] 刘杰, 冯世国, 李天斌, 等. 冲击荷载作用下岩石动态响应预测研究[J]. 岩土工程学报, 2018, 40(11): 2022-2030. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811010.htm LIU Jie, FENG Shi-guo, LI Tian-bin, et al. Prediction of dynamic response of rock under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2022-2030. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811010.htm
[3] 程立, 刘耀儒, 陶灼夫, 等. 拱坝建基面开挖过程中不平衡力变化及处理效果研究[J]. 岩土工程学报, 2017, 39(9): 1670-1679. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201709019.htm CHENG Li, LIU Yao-ru, TAO Zhuo-fu, et al. Variation of unbalanced force during excavation of arch dam base surface and treatment effects[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1670-1679. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201709019.htm
[4] SIREN T, KANTIA P, RINNE M. Considerations and observations of stress-induced and construction-induced excavation damage zone in crystalline rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 73: 165-174. doi: 10.1016/j.ijrmms.2014.11.001
[5] 姜光成, 胡乃联, 洪根意, 等. 基于GSI值量化和修正方法的岩体力学参数确定[J]. 岩土力学, 2018, 39(6): 2211-2218. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806036.htm JIANG Guang-cheng, HU Nai-lian, HONG Gen-yi, et al. Determination of rock mass mechanical parameters based on quantification and correction method of GSI value[J]. Rock and Soil Mechanics, 2018, 39(6): 2211-2218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806036.htm
[6] 於汝山, 杨宜, 许冬丽. Hoek-Brown强度准则在深部岩体力学参数估算中的应用研究[J]. 长江科学院院报, 2018, 35(1): 123-127. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201801029.htm YU Ru-shan, YANG Yi, XU Dong-li. Application of Hoek-Brown strength criterion in estimating mechanical parameters of deep rock mass[J]. Journal of Yangtze River Scientific Research Institue, 2018, 35(1): 123-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201801029.htm
[7] 程爱平, 肖术, 许梦国, 等. 基于广义Hoek-Brown准则的节理岩体强度及变形参数随机分析[J]. 岩土力学, 2017, 38(1): 205-213. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701027.htm CHENG Ai-ping, XIAO Shu, XU Meng-guo, et al. Stochastic analysis of strength and deformation parameters of jointed rock mass based on generalized Hoek-Brown criterion[J]. Rock and Soil Mechanics, 2017, 38(1): 205-213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701027.htm
[8] HOEK E, CARRANZA-TORRES C, CORKUM B. Hoek-Brown failure criterion—2002 edition[C]//Proceedings of the North American Rock Mechanics Society NARMS-TAC, 2002, Toronto: 267-273.
[9] 闫长斌, 李国权, 陈东亮, 等. 基于岩体爆破累积损伤效应的Hoek-Brown准则修正公式[J]. 岩土力学, 2011, 32(10): 2951-2964. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201110011.htm YAN Chang-bin, LI Guo-quan, CHENG Dong-liang, et al. Amended expressions of Hoek-Brown criterion based on blasting cumulative damage effects of rock mass[J]. Rock and Soil Mechanics, 2011, 32(10): 2951-2964. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201110011.htm
[10] 巫德斌, 徐卫亚. 基于Hoek-Brown准则的边坡开挖岩体力学参数研究[J]. 河海大学学报(自然科学版), 2005, 33(1): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200501022.htm WU De-bin, XU Wei-ya. Hoek-Brown criterion-based study on mechanical parameters[J]. Journal of Hohai Universit (Natural Sciences), 2005, 33(1): 89-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200501022.htm
[11] 夏开宗, 陈从新, 刘秀敏, 等. 基于岩体波速的Hoek-Brown准则预测岩体力学参数方法及工程应用[J]. 岩石力学与工程学报, 2013, 32(7): 1458-1466. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201307020.htm XIA Kai-zong, CHEN Cong-xin, LIU Xiu-min, et al. Estimation of rock mass mechanical parameters based on ultrasonic velocity of rock mass and Hoek-Brown criterion and its application to engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1458-1466. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201307020.htm
[12] ZHENG H, LI T, SHEN J, XU CS, et al. The effects of blast damage zone thickness on rock slope stability[J]. Engineering Geology, 2018, 246: 19-27.
[13] YILMAZ M, ERTIN A, ER S, et al. Numerical modelling of steep slopes in open rock quarries[J]. Journal of the Geological Society of India, 2018, 91(2): 232-238.
[14] 严鹏, 张晨, 高启栋, 等. 不同损伤程度下岩石力学参数变化的声波测试[J]. 岩土力学, 2015, 36(12): 3425-3432. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512012.htm YAN Peng, ZHANG Cheng, GAO Qi-dong, et al. Acoustic wave test on mechanical properties variationof rocks under different damage degrees[J]. Rock and Soil Mechanics, 2015, 36(12): 3425-3432. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512012.htm
[15] BARTON N. Some new Q-value correlations to assist in site characterisation and tunnel design[J]. International Journal of Rock Mechanics and Mining Sciences. 2002, 39(2): 185-216.
[16] 张程远, 万文恺, 王爽, 等. 基于岩体完整性评价的超声-地震波速度跨尺度转换方法研究[J]. 岩石力学与工程学报, 2018, 37(11): 2435-2445. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201811002.htm ZHANG Cheng-yuan, WAN Wen-kai, WANG Shuang, et al. Conversion method from ultrasonic to seismic velocity based on rock integrity assessment[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2435-2445. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201811002.htm
[17] HOEK E. Strength of jointed rock masses[J]. Géotechnique, 1983, 33(3): 187-223.