• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

开放型岩桥裂纹贯通机理及脆性破坏特征研究

陈国庆, 陈毅, 孙祥, 王栋, 秦昌安, 林之恒

陈国庆, 陈毅, 孙祥, 王栋, 秦昌安, 林之恒. 开放型岩桥裂纹贯通机理及脆性破坏特征研究[J]. 岩土工程学报, 2020, 42(5): 908-915. DOI: 10.11779/CJGE202005013
引用本文: 陈国庆, 陈毅, 孙祥, 王栋, 秦昌安, 林之恒. 开放型岩桥裂纹贯通机理及脆性破坏特征研究[J]. 岩土工程学报, 2020, 42(5): 908-915. DOI: 10.11779/CJGE202005013
CHEN Guo-qing, CHEN Yi, SUN Xiang, WANG Dong, QING Chang-an, LIN Zhi-heng. Crack coalescence and brittle failure characteristics of open rock bridges[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 908-915. DOI: 10.11779/CJGE202005013
Citation: CHEN Guo-qing, CHEN Yi, SUN Xiang, WANG Dong, QING Chang-an, LIN Zhi-heng. Crack coalescence and brittle failure characteristics of open rock bridges[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 908-915. DOI: 10.11779/CJGE202005013

开放型岩桥裂纹贯通机理及脆性破坏特征研究  English Version

基金项目: 

国家自然科学基金项目 41521002

国家自然科学基金项目 41972284

中铁二院工程集团有限责任公司科研项目 KYY2019066(19-20)

详细信息
    作者简介:

    陈国庆(1982—),男,重庆万州人,教授,主要从事岩石力学破坏机理和稳定性评价方面的研究。Email:chgq1982@126.com

  • 中图分类号: TU452

Crack coalescence and brittle failure characteristics of open rock bridges

  • 摘要: 端部开裂的裂隙岩体内部岩桥贯通是导致岩体突发失稳破坏的主要原因,脆性破坏特征明显。利用声发射仪和岩石力学刚性试验机,对不同长度开放岩桥开展单轴压缩试验,结合高速摄像机记录信息,分析了开放岩桥裂纹起裂、扩展、贯通规律及脆性破坏过程力学特性和声发射特征,并通过三维断裂力学理论揭示了开放岩桥裂纹起裂扩展贯通机理。研究结果表明:与闭合裂纹相比,开放裂纹岩桥主裂纹从下部预制裂纹内尖端起裂,往上部拐折扩展贯通岩桥和上端面,贯通过程岩桥发生逐次多级破坏,次裂纹主要沿主裂纹拐折处起裂扩展贯通岩桥及下端面;应力曲线表现出峰前“波动上升”和峰后“滞留–突降”特征,声发射参数“多峰值”现象明显,阶段性和突发性特征突出;同时,三维理论分析表明裂纹起始扩展方向与岩桥长度无关,沿最大压应力方向扩展。研究所得开放岩桥裂纹扩展贯通特征可为裂隙岩体突发失稳破坏过程提供理论依据。
    Abstract: The coalescence of rock bridge of fractured rock mass with end cracking is the main cause of the sudden damage of the rock mass, and the brittle failure is obvious. The uniaxial compression tests are conducted on the open rock bridges with different lengths by using the acoustic emission tester and the rock mechanics rigidity tester. By use of the information recorded by high-speed camera, the crack coalescence laws and acoustic emission characteristics of open rock bridges are analyzed. The mechanism of crack initiation of open rock bridges is revealed by the theory of three-dimensional fracture mechanics. The results show that compared with the closed crack, the main crack of an open rock bridge starts from the tip of the crack at the lower part, and the main crack turns to the upper part expanding through the rock bridge and the top end. During the coalescence of the main crack, the rock bridge presents successive multi-stage failure. The secondary crack propagates along the inflection of the main crack and extends through the rock bridge and the lower end. The stress curve shows the "fluctuation rise" before the peak and "stagnation-sudden" after the peak, and the "multi-peak" phenomenon of the acoustic emission is obvious, with obvious stage and sudden features. Simultaneously, the three-dimensional theoretical analysis shows that the crack initiation direction is independent of the length of the rock bridge and extends along the direction of the maximum compressive stress. The obtained crack propagation characteristics of the open rock bridge may provide a theoretical basis for the sudden failure of the fractured rock mass.
  • 图  1   不同长度花岗岩岩桥试样示意图

    Figure  1.   Schematic diagram of granite bridge samples with different lengths

    图  2   不同长度岩桥单轴压缩轴向应力–轴向应变曲线

    Figure  2.   Stress-strain curves of rock bridges with different lengths under uniaxial compression

    图  3   下部预制裂纹坐标系

    Figure  3.   Coordinate system of lower prefabricated crack

    图  4   不同长度典型岩样破坏面及裂纹扩展角θ0三维示意图

    Figure  4.   Three-dimensional diagram of failure surface and crack propagation angle θ0of typical rock samples with different lengths

    图  5   闭合裂纹起裂扩展破坏特征示意图[23]

    Figure  5.   Schematic diagram of crack initiation and propagation failure characteristics of closed cracks[23]

    图  6   开放裂纹起裂扩展破坏特征示意图

    Figure  6.   Schematic diagram of crack initiation and propagation failure characteristics of open cracks

    图  7   50 mm岩桥应力–时间–AE参数曲线

    Figure  7.   Stress-time-AE parameter curve of 50 mm-rock bridge

    图  8   60 mm岩桥应力–时间–AE参数曲线

    Figure  8.   Stress-time-AE parameter curve of 60 mm-rock bridge

    图  9   70 mm岩桥应力–时间–AE参数曲线

    Figure  9.   Stress-time-AE parameter curve of 70 mm-rock bridge

    表  1   应力曲线分界点对应强度与单抗强度比

    Table  1   Strengths and uniaxial compressive strength ratios of stress curve demarcation point

    岩桥长度/mm强度比/%
    A/DB/DC/D
    5036.0572.0987.21
    6045.6374.7695.15
    7041.7781.0083.54
    下载: 导出CSV

    表  2   单轴压缩下不同长度花岗岩岩桥力学参数均值

    Table  2   Average mechanical parameters of granite bridges with different lengths under uniaxial compression

    岩桥长度/mm高度/mm直径/mm弹模/GPa强度/MPa
    5099.9550.0411.2388.86
    6099.9250.0213.65114.11
    70100.0150.0516.95147.82
    下载: 导出CSV

    表  3   不同长度典型岩样裂纹起裂贯通过程及脆性破坏形态

    Table  3   Crack initiation coalescence process and brittle failure morphology of typical rock samples with different lengths

    岩样编号裂纹起裂裂纹扩展–贯通模式脆性破坏形态破坏特征描述
    G-50-2①主裂纹从下部裂纹尖端起裂,产生2条张拉裂纹向上部扩展贯通岩桥;②主裂纹贯通过程有多个拐折点,说明岩桥不是一次性贯通,而是多次张拉-剪切逐级破坏,贯通后大块崩落,次裂纹沿主裂纹发育;③次裂纹快速扩展贯通为宏观裂纹,试件发生脆性破坏,伴随较小声响,岩块轻微弹射。
    G-60-2①主裂纹从下部裂纹尖端起裂,产生1条张拉裂纹向上倾斜扩展贯通岩桥上端面,贯通过程发生多次剪切拉裂;②主裂纹贯通后大块崩落,次裂纹沿主裂纹拐折处萌生扩展;③次裂纹向下扩展贯通岩桥下端面,向内扩展贯通岩桥,伴随较大响声,岩桥脆性破坏,岩块弹射远。
    G-70-2①主裂纹从下部裂纹尖端起裂,产生1条张拉裂纹向上倾斜扩展贯通岩桥上端面,贯通路径拐折处明显减少;②主裂纹贯通后大块崩飞,尖端处小岩块弹射,次裂纹发育;③次裂纹快速扩张,部分贯通试件下端面,部分向内扩展贯通岩桥,试件发生脆性破裂,响声大,岩块弹射很远。
    下载: 导出CSV

    表  4   单轴压缩下不同长度开放岩桥裂纹扩展角

    Table  4   Crack propagation angle of open bridge with different lengths under uniaxial compression

    试件编号扩展角θ0/(°)试件编号扩展角θ0/(°)试件编号扩展角θ0/(°)
    G-50-165G-60-171G-70-170
    G-50-270G-60-268G-70-276
    G-50-371G-60-3G-70-369
    G-50-469G-60-472G-70-472
    G-50-562G-60-569G-70-568
    均角67.40均角70.00均角71.00
    下载: 导出CSV

    表  5   不同长度岩桥AE特征信息统计

    Table  5   Statistics of AE feature information of rock bridges with different lengths

    试样编号微增第一稳定期起止时间/s突增第二稳定期起止时间/s剧增(最大值)
    计数/(106次)能量/(106aJ)计数/(106次)能量/(106aJ)计数/(106次)能量/(106aJ)
    G-50-20.810.92298~3421.361.83360~3805.107.22
    G-60-22.332.16375~4053.754.14415~4507.0810.6
    G-70-20.820.73361~3721.181.71375~4408.2414.1
    下载: 导出CSV
  • [1]

    RAO Q H, SUN Z Q, WANG G Y, et al. Mode II fracture mechanism of direct shearing specimen with guiding grooves of rock[J]. Trana Nonferrous Met Soc China, 2001, 2(11): 613-616.

    [2]

    GOU S H, SUN Z Q. Closing law and stress intensity factor of elliptical crack under compressive loading[J]. Trana Nonferrous Met Soc China, 2002, 5(12): 966-969.

    [3]

    BOBET A, EINSTEIN H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 863-888. doi: 10.1016/S0148-9062(98)00005-9

    [4]

    BOBET A. Fracture Coalescence in Rock Materials: Experimental Observations and Numerical Predictions[D]. Cambridge: Massachusetts Institute of Technology, 1997.

    [5]

    WONG L N Y, EINSTEIN H H. Crack coalescence in molded gypsum and Carrara marble: Part 1 Macroscopic observations and interpretation[J]. Rock Mechanics and Rock Engineering, 2009, 42(3): 475-511. doi: 10.1007/s00603-008-0002-4

    [6]

    WONG L N Y, EINSTEIN H H. Crack coalescence in molded gypsum and Carrara marble: Part 2 microscopic observations and interpretation[J]. Rock Mechanics and Rock Engineering, 2009, 42(3): 513-545. doi: 10.1007/s00603-008-0003-3

    [7] 黄达, 黄润秋. 卸荷条件下裂隙岩体变形破坏及裂纹扩展演化的物理模型试验[J]. 岩石力学与工程学报, 2010, 29(3): 502-512. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003011.htm

    HUANG Da, HUANG Run-qiu. Physical model test on deformation failure and crack propagation evolvement of fissured rocks under unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 502-512. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003011.htm

    [8] 黄达, 黄润秋, 张永兴. 三轴加卸载下花岗岩脆性破坏及应力跌落规律[J]. 土木建筑与环境工程, 2011, 33(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201102002.htm

    HUANG Da, HUANG Run-qiu, ZHANG Yong-xing. Brittle failure and stress drop of granite under triaxial loading and unloading[J]. Civil Engineering and Environmental Engineering, 2011, 33(2): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201102002.htm

    [9] 赵延林, 彭青阳, 万文, 等. 直剪作用下不共面断续节理岩桥破断试验与数值研究[J]. 土木建筑与环境工程, 2014, 36(1): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201401009.htm

    ZHAO Yan-lin, PENG Qing-yang, WAN Wen, et al. Breakage test and numerical study of non-coplanar intermittent jointed rock bridge under direct shear[J]. Civil Engineering and Environmental Engineering, 2014, 36(1): 59-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201401009.htm

    [10] 赵延林, 万文, 王卫军, 等. 类岩石材料有序多裂纹体单轴压缩破断试验与翼形断裂数值模拟[J]. 岩土工程学报, 2013, 35(11): 2097-2109. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201311024.htm

    ZHAO Yan-lin, WAN Wen, WANG Wei-jun, et al. Study on uniaxial compression fracture test and wing fracture numerical simulation of ordered multi-cracked rock materials[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2097-2109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201311024.htm

    [11] 杨圣奇, 戴永浩, 韩立军, 等. 断续预制裂隙脆性大理岩变形破坏特性单轴压缩试验研究[J]. 岩石力学与工程学报, 2009, 28(12): 2391-2404. doi: 10.3321/j.issn:1000-6915.2009.12.003

    YANG Sheng-qi, DAI Yong-hao, HAN Li-jun, et al. Uniaxial compression experimental research on deformation and failure properties of brittle marble specimen with pre-existing fissures[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12): 2391-2404. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.12.003

    [12] 杨圣奇, 黄彦华, 刘相如. 断续双裂隙岩石抗拉强度与裂纹扩展颗粒流分析[J]. 中国矿业大学学报, 2014, 43(2): 220-226. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201402007.htm

    YANG Sheng-qi, HUANG Yan-hua, LIU Xiang-ru. Analysis of tensile strength and crack propagation particle flow in intermittent double fracture rock[J]. Journal of China University of Mining & Technology, 2014, 43(2): 220-226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201402007.htm

    [13]

    YANG S Q, HUANG Y H, TIAN W L, et al. Effect of high temperature on deformation failure behavior of granite specimen containing a single fissure under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2019, 52: 2087-2107. doi: 10.1007/s00603-018-1725-5

    [14]

    YANG S Q, YIN P F, ZHANG Y C, et al. Failure behavior and crack evolution mechanism of a non-persistent jointed rock mass containing a circular hole[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114: 101-121. doi: 10.1016/j.ijrmms.2018.12.017

    [15]

    ZHOU X P, BI J, QIAN Q H. Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1097-1114. doi: 10.1007/s00603-014-0627-4

    [16]

    ZHOU X P, CHENG H, FENG Y F. An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 1961-1986. doi: 10.1007/s00603-013-0511-7

    [17] 纪洪广, 卢翔. 常规三轴压缩下花岗岩声发射特征及其主破裂前兆信息研究[J]. 岩石力学与工程学报, 2015, 34(4): 694-702. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504005.htm

    JI Hong-guang, LU Xiang. Study on acoustic emission characteristics and precursor rupture information of granite under conventional triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 694-702. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504005.htm

    [18] 赵兴东, 唐春安, 李元辉, 等. 花岗岩破裂全过程的声发射特性研究[J]. 岩石力学与工程学报, 2006, 25(2): 3673-3678. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2052.htm

    ZHAO Xing-dong, TANG Chun-an, LI Yuan-hui, et al. Study on AE activity characteristics under uniaxial compression loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(2): 3673-3678. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2052.htm

    [19]

    CHEN G Q, ZHANG Y, HUANG R Q, et al. Failure mechanism of rock bridge based on acoustic emission technique[J]. Journal of Sensors, 2015: Article ID 964730.

    [20] 宋义敏, 邢同振, 吕祥锋, 等. 不同加载速率Ⅰ型预制裂纹花岗岩断裂特征研究[J]. 岩土力学, 2018, 39(12): 81-88, 96. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812010.htm

    SONG Yi-min, XING Tong-zhen, LU Xiang-feng, et al. Fracture characteristics of type I pre-cracked granite with different loading rates[J]. Rock and Soil Mechanics, 2018, 39(12): 81-88, 96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812010.htm

    [21] 黎立云, 许凤光, 高峰, 等. 岩桥贯通机制的断裂力学分析[J]. 岩石力学与工程学报, 2005, 24(23): 4328-4334.

    LI Li-yun, XU Feng-guang, GAO Feng, et al. Fracture mechanics analysis of rock bridge failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4328-4334. (in Chinese)

    [22] 张国凯, 李海波, 王明洋, 等. 单裂隙花岗岩破坏强度及裂纹扩展特征研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2760-2771. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1016.htm

    ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, et al. Study on failure strength and crack propagation characteristics of single-fractured granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2760-2771. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1016.htm

    [23] 郭奇峰, 武旭, 蔡美峰, 等. 预制裂隙花岗岩的强度特征与破坏模式试验[J]. 工程科学学报, 2019, 41(1): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201901004.htm

    GUO Qi-feng, WU Xu, CAI Mei-feng, et al. Strength characteristics and failure mode test of prefabricated fractured granite[J]. Journal of Engineering Science, 2019, 41(1): 43-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201901004.htm

    [24] 陈国庆, 刘辉, 秦昌安, 等. 中部锁固岩桥三轴加卸荷力学特性及裂纹扩展研究[J]. 岩石力学与工程学报, 2017, 36(5): 1162-1173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201705012.htm

    CHEN Guo-qing, LIU Hui, QIN Chan-gan, et al. Study on mechanical properties and crack propagation of triaxial loading and unloading of central locking rock bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1162-1173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201705012.htm

    [25] 李世愚, 和泰名, 尹祥础, 等. 岩石断裂力学导论[M]. 合肥: 中国科学技术大学出版社, 2010.

    LI Shi-yu, HE Tai-ming, YIN Xiang-chu, et al. Introduction to Rock Fracture Mechanics[M]. Hefei: University of Science and Technology China Press, 2010. (in Chinese)

    [26] 赵扬锋, 张超, 刘力强, 等. 预制裂纹花岗岩单轴压缩全过程声发射特征试验研究[J]. 煤炭科学技术, 2017, 45(7): 44-49, 138. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201707009.htm

    ZHAO Yang-feng, ZHANG Chao, LIU Li-qiang, et al. Experimental study on acoustic emission characteristics of pre-cracked granite during uniaxial compression[J]. Coal Science and Technology, 2017, 45(7): 44-49, 138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201707009.htm

  • 期刊类型引用(4)

    1. 王艳,薛逸翔,朱鹏. 电动联合渗透反应屏障修复污染土壤的研究进展. 安全与环境学报. 2024(01): 330-344 . 百度学术
    2. 周细霞,刘朝淑,孙荣国. Fe(II)改性蒙脱石对土壤汞的吸附固定机理探究. 贵州师范大学学报(自然科学版). 2024(04): 63-74 . 百度学术
    3. 王艳,张李奕岚,朱鹏,王恒宇. 电动法去除污染土中重金属铬的试验研究. 安全与环境学报. 2024(08): 3251-3259 . 百度学术
    4. 李宗春,郭苗章,谌伟艳. 某废弃矿山重金属污染土壤治理约束优化研究. 环境科学与管理. 2023(05): 71-75 . 百度学术

    其他类型引用(3)

图(9)  /  表(5)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  31
  • PDF下载量:  144
  • 被引次数: 7
出版历程
  • 收稿日期:  2019-07-16
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-04-30

目录

    /

    返回文章
    返回