• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

盾构隧道二次衬砌合理施作时机模型试验研究

王士民, 陈兵, 王先明, 鲁茜茜, 阮雷, 蹇蕴奇

王士民, 陈兵, 王先明, 鲁茜茜, 阮雷, 蹇蕴奇. 盾构隧道二次衬砌合理施作时机模型试验研究[J]. 岩土工程学报, 2020, 42(5): 882-891. DOI: 10.11779/CJGE202005010
引用本文: 王士民, 陈兵, 王先明, 鲁茜茜, 阮雷, 蹇蕴奇. 盾构隧道二次衬砌合理施作时机模型试验研究[J]. 岩土工程学报, 2020, 42(5): 882-891. DOI: 10.11779/CJGE202005010
WANG Shi-min, CHEN Bing, WANG Xian-ming, LU Xi-xi, RUAN Lei, JIAN Yun-qi. Model tests on reasonable construction time of secondary lining of shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 882-891. DOI: 10.11779/CJGE202005010
Citation: WANG Shi-min, CHEN Bing, WANG Xian-ming, LU Xi-xi, RUAN Lei, JIAN Yun-qi. Model tests on reasonable construction time of secondary lining of shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 882-891. DOI: 10.11779/CJGE202005010

盾构隧道二次衬砌合理施作时机模型试验研究  English Version

基金项目: 

国家自然科学基金面上项目 51578461

详细信息
    作者简介:

    王士民(1978—),男,博士,教授,主要从事地下结构安全性及耐久性的研究。E-mail: wangshimin@swjtu.edu.cn

  • 中图分类号: TU43

Model tests on reasonable construction time of secondary lining of shield tunnel

  • 摘要: 近年来,盾构隧道双层衬砌作为一种新的形式开始得到应用推广,但由于相关研究较少,导致盾构隧道双层衬砌结构体系关键参数尚不明确,其中二次衬砌合理施作时机便是其中之一。以狮子洋隧道工程为依托,采用相似模型试验对二次衬砌合理施作时机展开研究,研究结果表明:二次衬砌在盾构隧道双层衬砌中仅作为辅助承载结构,施作时机为57%~83%,结构径向收敛值和椭圆度随加载步变化最为缓慢,结构累计声发射数AE呈渐进性增长;施作过早或过晚,二次衬砌均不能有效抑制管片衬砌变形,且结构累计声发射数AE均呈阶梯型增长;随着二次衬砌施作时机推迟,二次衬砌与管片衬砌最大内力量值之比及结构开始出现宏观损伤破坏荷载级别均呈先增大后减小的变化规律。因此,在综合考虑双层衬砌结构加载过程中的变形历程及损伤特性,认为二次衬砌合理施作时机为57%~83%。
    Abstract: Recently, the double-layer lining of shield tunnels has begun to be applied as a new form. However, due to the lack of the related researches, the key parameters of the double-layer lining structure system of shield tunnels are still unclear. The construction time of the second lining is one of them. Based on the Shiziyang Tunnel Project, a similar model test is used to study the reasonable construction time of the secondary lining. The results show that the secondary lining is only used as the auxiliary bearing structure in the double-layer lining of the shield tunnel. When the construction time is 57%~83%, the radial convergence and ellipticity of the structure change most slowly with the loading step, and the cumulative AE number of the structure increases progressively. If it is constructed too early or too late, the secondary lining can not effectively inhibit the deformation of the segment lining, and the cumulative AE number of the structure increases stepwisely. With the delay of the construction time of the secondary lining, the ratio of the maximum internal strength of the secondary lining to that of the segment lining and the load level of the macroscopic damage at the beginning of the structure both increase first and then decrease. Therefore, considering the deformation history and damage characteristics of the double-layer lining structure during the loading process, the reasonable construction time of the secondary lining is 57%~83%.
  • 图  1   狮子洋隧道越江段纵断面地质图

    Figure  1.   Geological map of cross section of Shiziyang Tunnel

    图  2   狮子洋隧道双层衬砌分块图

    Figure  2.   Structure of segment lining of Shiziyang Tunnel

    图  3   管片衬砌相似模型接头处理方式

    Figure  3.   Joint treatment of segment lining similar model

    图  4   管片纵向接头安装过程效果图

    Figure  4.   Diagram of installation process of longitudinal segment joints

    图  5   模型试验复合式双层衬砌结构

    Figure  5.   Composite double-layer lining structure for model tests

    图  6   模型试验加载图

    Figure  6.   Loading system of model tests

    图  7   各组试验结构径向收敛值随加载变化曲线

    Figure  7.   Variation of radial convergence of structure with load

    图  8   各组试验结构椭圆度随加载变化曲线

    Figure  8.   Variation of ellipticity of structure with load

    图  9   接触面压力平均值随荷载变化曲线

    Figure  9.   Variation of average pressure of contact surface with load

    图  10   接触面压力占地层土压力平均分担比例

    Figure  10.   Ratios of pressure of contact surface to earth pressure of strata

    图  11   第8加载步管片衬砌环向内力分布

    Figure  11.   Distribution of axial force and bending moment of lining ring at 8th loading step

    图  12   第8加载步二次衬砌环向内力分布

    Figure  12.   Distribution of internal forces of the secondary lining ring at 8th loading step

    图  13   声发射事件数随加载步变化曲线

    Figure  13.   Variation of number of acoustic emission events with loading step

    图  14   第2组试验宏观破坏示意图

    Figure  14.   Macroscopic failure of test group No. 2

    表  1   相似关系表

    Table  1   Similar relationship of model tests

    物理量符号单位相似比
    内摩擦角φ °Cφ=1 
    应变ε Cε=1
    泊松比ν Cν=1 
    黏聚力cPaCc=20 
    强度RPaCR=20 
    应力σ PaCσ=20 
    弹性模量EPaCE=20 
    下载: 导出CSV

    表  2   土体材料物理力学参数对照表

    Table  2   Physical and mechanical parameters of soil materials

    名称γ /(kN·m-3)E/MPac/kPaφ/(°)
    原型值18.7~20.315.0~25.0020.0~32.0
    模型值20.01.0028.0
    对应原型值20.020.0028.0
    下载: 导出CSV

    表  3   双层衬砌结构物理力学参数表

    Table  3   Physical and mechanical parameters of double-layer lining structure

    衬砌结构物理力学参数原型值模型值对应原型值
    管片弹性模量/GPa34.51.7234.4
    单轴抗压强度标准值/MPa32.41.6032.0
    二次衬砌弹性模量/GPa28.01.4328.6
    单轴抗压强度标准值/MPa16.70.8416.8
    环向主筋等效拉压刚度/(105N)2.4×1041.802.82×104
    下载: 导出CSV

    表  4   管片接头对应弯曲刚度和槽缝深度

    Table  4   Bending stiffnesses and slot depths of segment joints

    序号割槽位置弯曲刚度/(108 N·m·rad-1)模型槽缝深度/mm
    1A区域2.57(正弯曲)14.0
    2B区域1.60(负弯曲)15.5
    下载: 导出CSV

    表  5   试验加载工况表

    Table  5   Loading schemes of model tests

    加载步Ⅲ方向千斤顶压力/MPaⅠ方向荷载
    千斤顶油压/MPa模型拱顶地层压力/kPa原型拱顶地层压力/kPa隧道等效上覆土层/m
    000.00.000.000
    1180.61.4428.803
    2181.05.52110.4011
    3181.48.67173.4017
    4181.811.86237.2025
    5182.214.46289.2030
    6182.618.70374.0037
    7183.021.79435.8043
    8183.424.95499.0050
    9183.829.29585.8060
    10184.233.96679.2070
    11184.641.88837.6085
    12185.047.31946.2095
    13185.452.831056.60105
    14185.857.341146.80115
    15186.261.331226.60125
    16186.665.371307.40135
    下载: 导出CSV

    表  6   试验分组

    Table  6   Test grouping

    试验组号管片拼装方式侧压力系数目标环封顶块位置对应加载步二次衬砌施作时机/%
    1相对中间目标环管片旋转49.08°布置0.4左拱腰237
    2357
    3483
    45100
    56120
    69200
    下载: 导出CSV

    表  7   第8加载步双层衬砌最大内力量值

    Table  7   Values of maximum internal force of double-layer lining at 8th loading step

    试验分组二次衬砌施作时机/%二次衬砌最大内力管片衬砌最大内力二衬最大内力/ 管片最大内力
    轴力/kN正弯矩/(kN·m)负弯矩/(kN·m)轴力/kN正弯矩/(kN·m)负弯矩/(kN·m)轴力/kN正弯矩/(kN·m)负弯矩/(kN·m)
    1378359.4418.0252.613165.91406.11456.40.640.290.18
    2578498.9907.31132.56385.11236.1990.31.330.920.92
    3838096.0585.3303.010398.91347.11286.90.780.450.22
    41003770.3332.4249.713540.41951.71463.80.280.230.13
    51304112.4546.2591.712910.32538.02001.60.320.270.23
    下载: 导出CSV

    表  8   双层衬砌结构内部损伤及宏观破坏荷载级别

    Table  8   Levels of internal and macroscopic damage loads of double-layer lining structure

    试验组号二次衬砌施作时机/%二次衬砌施作荷载级别结构内部损伤出现荷载级别结构宏观破坏出现荷载级别主裂缝位置主裂缝方向
    137259(二次衬砌)拱顶纵向、斜向
    2573712(二次衬砌)拱顶、拱底纵向
    38341010(二次衬砌)拱底、左拱肩拱底纵向、拱肩斜向
    410051010(二次衬砌)拱顶纵向
    5120699(二次衬砌)拱底纵向
    6200988(管片)拱顶、拱底纵向
    下载: 导出CSV
  • [1]

    YAN Qi-xiang, YAO Chao-fan, YANG Wen-bo, et al. An improved numerical model of shield tunnel with double lining and its applications[J]. Advances in Materials Science and Engineering, 2015: 1-15.

    [2] 王士民, 于清洋, 彭博. 水下盾构隧道管片衬砌结构渐进性破坏机理模型试验研究[J]. 土木工程学报, 2016, 49(4): 111-120. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201604013.htm

    WANG Shi-min, YU Qing-yang, PENG Bo. Model test study on progressive failure mechanism of submarine shield tunnel segment lining structure[J]. China Civil Engineering Journal, 2016, 49(4): 111-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201604013.htm

    [3] 董飞, 房倩, 张顶立. 北京地铁运营隧道病害状态分析[J]. 土木工程学报, 2017, 50(6): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201706012.htm

    DONG Fei, FANG Qian, ZHANG Ding-li, et al. Analysis of disease status of Beijing subway tunnels[J]. China Civil Engineering Journal, 2017, 50(6): 104-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201706012.htm

    [4] 村上博智, 小泉淳. 二次覆工で补强されたシ一ルド グメントリングの拳动について[J]. 土木学会论文集, 1987(388): 85-93.

    HIROTOMO Murakami, ATSUSHI Koizumi. On the movement of shielded cement ring that was reinforced by the secondary lining[J]. Proceedings of JSCE, 1987(388): 85-93. (in Japanese)

    [5] 村上博智, 小泉淳. 二次覆工された千鳥組セグメントリングの挙動について[J]. 土木学会论文集, 1991(430): 135-142.

    HIROTOMO Murakami, ATSUSHI Koizumi. On the behavior of the secondary lined staggered segment ring[J]. Proceedings of JSCE, 1991(430): 135-142. (in Japanese)

    [6]

    FUJIMORI S, KHANGAI T, KOYAMA Y. Experimental study on mechanical behavior of tunnel lining consists of segments and secondary lining, Part 2: analysis model[C]//Proceedings of Anual Conference of the Japan Society of Civil Engineers, 1983, Tokyo: 173-174. (In Japanese

    [7] 张厚美, 过迟, 吕国梁. 盾构压力隧洞双层衬砌的力学模型研究[J]. 水利学报, 2001, 32(4): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200104004.htm

    ZHANG Hou-mei, GUO Chi, LU Guo-liang. Study on mechanical model of double-layer lining of shield tunnel[J]. Journal of Hydraulic Engineering, 2001, 32(4): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200104004.htm

    [8] 崛地纪行. トンネル轴方向の刚性を考虑したセグメントリングの解析法[J]. トンネルと地下, 1989(20): 287-292.

    RAKUJIKO . Analytical method of segment ring considering the eccentricity of tunnel axis[J]. Tunnel and Underground, 1989(20): 287-292. (in Japanese)

    [9] 王士民, 于清洋, 彭博, 等. 基于塑性损伤的盾构隧道双层衬砌三维实体非连续接触模型研究[J]. 岩石力学与工程学报, 2016, 35(2): 303-311. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602012.htm

    WANG Shi-min, YU Qing-yang, PENG Bo, et al. Study on three-dimensional solid discontinuous contact model of double-layer lining of shield tunnel based on plastic damage[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 303-311. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602012.htm

    [10] 何川, 张建刚, 杨征. 武汉长江隧道管片衬砌结构力学特征模型试验研究[J]. 土木工程学报, 2008, 41(12): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200812017.htm

    HE Chuan, ZHANG Jian-gang, YANG Zheng. Model test study on mechanical characteristics of segment lining structure of Wuhan Yangtze River Tunnel[J]. China Civil Engineering Journal, 2008, 41(12): 85-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200812017.htm

    [11]

    FENG Kun, HE Chuan, FANG Yong, et al. Study on the mechanical behavior of lining structure for underwater shield tunnel of high-speed railway[J]. Advances in Structural Engineering, 2013, 16(8): 1381-1399.

    [12] 村上博智, 小泉. 二次覆工で补强されたシ一ルド グメントリングの拳动について[J]. 土木学会论文集, 1987(388): 85-93.

    Murakami HIROTOMO, KOIZUMI . On the movement of shieldment ring that was reinforced by the secondary lining[J]. Proceedings of JSCE, 1987(388): 85-93. (in Japanese)

    [13]

    Wunfah NASRI A, Della Posta MICHAEL P. Full scale testing of tunnel liner[C]//Towards New Worlds inTunnelling. 1992: 315-320.

    [14]

    MURAKAMI H, KOIZUMI A. Behavior of shield segment ring reinforced by secondary lining[J]. Journal of Geotechnical Engineering, 1987, 388: 85-94. (in Japanese)

    [15]

    TAKAMATSU N, MURAKAMI H, KOIZUMI A. A study on the bending behavior in the longitudinal direction of shield tunnels with secondary linings[C]//Proceedings of the International Congress on Towards New World in Tunnellings, 1992, Acapulco: 277-285.

    [16]

    PAN Y W, DONG J J. Time-dependent tunnel convergence: I formulation of the model[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1991, 28(6): 469-475.

    [17] 刘志春, 李文江, 朱永全. 软岩大变形隧道二次衬砌施作时机探讨[J]. 岩石力学与工程学报, 2008, 27(3): 580-588. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200803020.htm

    LIU Zhi-chun, LI Wen-jiang, ZHU Yong-quan, et al. Discussion on the timing of secondary lining construction in soft rock large deformation tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 580-588. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200803020.htm

    [18] 许建聪, 周泉吉. 软弱破碎围岩隧道二次衬砌施作的合理时机判别研究[J]. 系统仿真技术, 2014, 10(3): 197-202, 238.

    XU Jian-cong, ZHOU Quan-ji. Study on reasonable timing discrimination of secondary lining of soft and broken surrounding rock tunnel[J]. System Simulation Technology, 2014, 10(3): 197-202, 238. (in Chinese)

    [19] 徐国文, 王士民, 代光辉, 等. 基于内外分区割槽方式的盾构隧道接头环向模拟方法研究[J]. 铁道学报, 2016, 38(4): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201604017.htm

    XU Guo-wen, WANG Shi-min, DAI Guang-hui, et al. Research on the circumferential simulation method of shield tunnel joint based on internal and external divisional slotting method[J]. Journal of the China Railway Society, 2016, 38(4): 90-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201604017.htm

    [20] 鉄道総合技術研究所. 鉄道構造物等設計標準·同解説(シルードトンネル)[M]. 东京: 丸善株式会社, 1997.

    Railway Comprehensive Technology Research Institute. Standard and explanation for railwaystructures design (shield tunnel)[M]. Tokyo: The Maruzen Corporation, 1997. (in Japanese)

    [21] 王士民, 姚佳兵, 何祥凡, 等. 水压对盾构管片衬砌力学特征与破坏形态的影响模型试验研究[J]. 土木工程学报, 2018, 51(4): 111-120. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201804014.htm

    WANG Shi-min, YAO Jia-bing, HE Xiang-fan, et al. Model test study on the influence of water pressure on mechanical characteristics and failure modes of shield lining[J]. China Civil Engineering Journal, 2018, 51(4): 111-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201804014.htm

图(14)  /  表(8)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  29
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-23
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-04-30

目录

    /

    返回文章
    返回