Model tests on reasonable construction time of secondary lining of shield tunnel
-
摘要: 近年来,盾构隧道双层衬砌作为一种新的形式开始得到应用推广,但由于相关研究较少,导致盾构隧道双层衬砌结构体系关键参数尚不明确,其中二次衬砌合理施作时机便是其中之一。以狮子洋隧道工程为依托,采用相似模型试验对二次衬砌合理施作时机展开研究,研究结果表明:二次衬砌在盾构隧道双层衬砌中仅作为辅助承载结构,施作时机为57%~83%,结构径向收敛值和椭圆度随加载步变化最为缓慢,结构累计声发射数AE呈渐进性增长;施作过早或过晚,二次衬砌均不能有效抑制管片衬砌变形,且结构累计声发射数AE均呈阶梯型增长;随着二次衬砌施作时机推迟,二次衬砌与管片衬砌最大内力量值之比及结构开始出现宏观损伤破坏荷载级别均呈先增大后减小的变化规律。因此,在综合考虑双层衬砌结构加载过程中的变形历程及损伤特性,认为二次衬砌合理施作时机为57%~83%。Abstract: Recently, the double-layer lining of shield tunnels has begun to be applied as a new form. However, due to the lack of the related researches, the key parameters of the double-layer lining structure system of shield tunnels are still unclear. The construction time of the second lining is one of them. Based on the Shiziyang Tunnel Project, a similar model test is used to study the reasonable construction time of the secondary lining. The results show that the secondary lining is only used as the auxiliary bearing structure in the double-layer lining of the shield tunnel. When the construction time is 57%~83%, the radial convergence and ellipticity of the structure change most slowly with the loading step, and the cumulative AE number of the structure increases progressively. If it is constructed too early or too late, the secondary lining can not effectively inhibit the deformation of the segment lining, and the cumulative AE number of the structure increases stepwisely. With the delay of the construction time of the secondary lining, the ratio of the maximum internal strength of the secondary lining to that of the segment lining and the load level of the macroscopic damage at the beginning of the structure both increase first and then decrease. Therefore, considering the deformation history and damage characteristics of the double-layer lining structure during the loading process, the reasonable construction time of the secondary lining is 57%~83%.
-
Keywords:
- shield tunnel /
- segment lining /
- secondary lining /
- construction time /
- model test
-
-
表 1 相似关系表
Table 1 Similar relationship of model tests
物理量 符号 单位 相似比 内摩擦角 ° 应变 — Cε=1 泊松比 — 黏聚力 c Pa 强度 R Pa 应力 Pa 弹性模量 E Pa 表 2 土体材料物理力学参数对照表
Table 2 Physical and mechanical parameters of soil materials
名称 γ /(kN·m-3) E/MPa c/kPa φ/(°) 原型值 18.7~20.3 15.0~25.0 0 20.0~32.0 模型值 20.0 1.0 0 28.0 对应原型值 20.0 20.0 0 28.0 表 3 双层衬砌结构物理力学参数表
Table 3 Physical and mechanical parameters of double-layer lining structure
衬砌结构 物理力学参数 原型值 模型值 对应原型值 管片 弹性模量/GPa 34.5 1.72 34.4 单轴抗压强度标准值/MPa 32.4 1.60 32.0 二次衬砌 弹性模量/GPa 28.0 1.43 28.6 单轴抗压强度标准值/MPa 16.7 0.84 16.8 环向主筋 等效拉压刚度/(105N) 2.4×104 1.80 2.82×104 表 4 管片接头对应弯曲刚度和槽缝深度
Table 4 Bending stiffnesses and slot depths of segment joints
序号 割槽位置 弯曲刚度/(108 N·m·rad-1) 模型槽缝深度/mm 1 A区域 2.57(正弯曲) 14.0 2 B区域 1.60(负弯曲) 15.5 表 5 试验加载工况表
Table 5 Loading schemes of model tests
加载步 Ⅲ方向千斤顶压力/MPa Ⅰ方向荷载 千斤顶油压/MPa 模型拱顶地层压力/kPa 原型拱顶地层压力/kPa 隧道等效上覆土层/m 0 0 0.0 0.00 0.00 0 1 18 0.6 1.44 28.80 3 2 18 1.0 5.52 110.40 11 3 18 1.4 8.67 173.40 17 4 18 1.8 11.86 237.20 25 5 18 2.2 14.46 289.20 30 6 18 2.6 18.70 374.00 37 7 18 3.0 21.79 435.80 43 8 18 3.4 24.95 499.00 50 9 18 3.8 29.29 585.80 60 10 18 4.2 33.96 679.20 70 11 18 4.6 41.88 837.60 85 12 18 5.0 47.31 946.20 95 13 18 5.4 52.83 1056.60 105 14 18 5.8 57.34 1146.80 115 15 18 6.2 61.33 1226.60 125 16 18 6.6 65.37 1307.40 135 表 6 试验分组
Table 6 Test grouping
试验组号 管片拼装方式 侧压力系数 目标环封顶块位置 对应加载步 二次衬砌施作时机/% 1 相对中间目标环管片旋转49.08°布置 0.4 左拱腰 2 37 2 3 57 3 4 83 4 5 100 5 6 120 6 9 200 表 7 第8加载步双层衬砌最大内力量值
Table 7 Values of maximum internal force of double-layer lining at 8th loading step
试验分组 二次衬砌施作时机/% 二次衬砌最大内力 管片衬砌最大内力 二衬最大内力/ 管片最大内力 轴力/kN 正弯矩/(kN·m) 负弯矩/(kN·m) 轴力/kN 正弯矩/(kN·m) 负弯矩/(kN·m) 轴力/kN 正弯矩/(kN·m) 负弯矩/(kN·m) 1 37 8359.4 418.0 252.6 13165.9 1406.1 1456.4 0.64 0.29 0.18 2 57 8498.9 907.3 1132.5 6385.1 1236.1 990.3 1.33 0.92 0.92 3 83 8096.0 585.3 303.0 10398.9 1347.1 1286.9 0.78 0.45 0.22 4 100 3770.3 332.4 249.7 13540.4 1951.7 1463.8 0.28 0.23 0.13 5 130 4112.4 546.2 591.7 12910.3 2538.0 2001.6 0.32 0.27 0.23 表 8 双层衬砌结构内部损伤及宏观破坏荷载级别
Table 8 Levels of internal and macroscopic damage loads of double-layer lining structure
试验组号 二次衬砌施作时机/% 二次衬砌施作荷载级别 结构内部损伤出现荷载级别 结构宏观破坏出现荷载级别 主裂缝位置 主裂缝方向 1 37 2 5 9(二次衬砌) 拱顶 纵向、斜向 2 57 3 7 12(二次衬砌) 拱顶、拱底 纵向 3 83 4 10 10(二次衬砌) 拱底、左拱肩 拱底纵向、拱肩斜向 4 100 5 10 10(二次衬砌) 拱顶 纵向 5 120 6 9 9(二次衬砌) 拱底 纵向 6 200 9 8 8(管片) 拱顶、拱底 纵向 -
[1] YAN Qi-xiang, YAO Chao-fan, YANG Wen-bo, et al. An improved numerical model of shield tunnel with double lining and its applications[J]. Advances in Materials Science and Engineering, 2015: 1-15.
[2] 王士民, 于清洋, 彭博. 水下盾构隧道管片衬砌结构渐进性破坏机理模型试验研究[J]. 土木工程学报, 2016, 49(4): 111-120. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201604013.htm WANG Shi-min, YU Qing-yang, PENG Bo. Model test study on progressive failure mechanism of submarine shield tunnel segment lining structure[J]. China Civil Engineering Journal, 2016, 49(4): 111-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201604013.htm
[3] 董飞, 房倩, 张顶立. 北京地铁运营隧道病害状态分析[J]. 土木工程学报, 2017, 50(6): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201706012.htm DONG Fei, FANG Qian, ZHANG Ding-li, et al. Analysis of disease status of Beijing subway tunnels[J]. China Civil Engineering Journal, 2017, 50(6): 104-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201706012.htm
[4] 村上博智, 小泉淳. 二次覆工で补强されたシ一ルド グメントリングの拳动について[J]. 土木学会论文集, 1987(388): 85-93. HIROTOMO Murakami, ATSUSHI Koizumi. On the movement of shielded cement ring that was reinforced by the secondary lining[J]. Proceedings of JSCE, 1987(388): 85-93. (in Japanese)
[5] 村上博智, 小泉淳. 二次覆工された千鳥組セグメントリングの挙動について[J]. 土木学会论文集, 1991(430): 135-142. HIROTOMO Murakami, ATSUSHI Koizumi. On the behavior of the secondary lined staggered segment ring[J]. Proceedings of JSCE, 1991(430): 135-142. (in Japanese)
[6] FUJIMORI S, KHANGAI T, KOYAMA Y. Experimental study on mechanical behavior of tunnel lining consists of segments and secondary lining, Part 2: analysis model[C]//Proceedings of Anual Conference of the Japan Society of Civil Engineers, 1983, Tokyo: 173-174. (In Japanese
[7] 张厚美, 过迟, 吕国梁. 盾构压力隧洞双层衬砌的力学模型研究[J]. 水利学报, 2001, 32(4): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200104004.htm ZHANG Hou-mei, GUO Chi, LU Guo-liang. Study on mechanical model of double-layer lining of shield tunnel[J]. Journal of Hydraulic Engineering, 2001, 32(4): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200104004.htm
[8] 崛地纪行. トンネル轴方向の刚性を考虑したセグメントリングの解析法[J]. トンネルと地下, 1989(20): 287-292. RAKUJIKO . Analytical method of segment ring considering the eccentricity of tunnel axis[J]. Tunnel and Underground, 1989(20): 287-292. (in Japanese)
[9] 王士民, 于清洋, 彭博, 等. 基于塑性损伤的盾构隧道双层衬砌三维实体非连续接触模型研究[J]. 岩石力学与工程学报, 2016, 35(2): 303-311. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602012.htm WANG Shi-min, YU Qing-yang, PENG Bo, et al. Study on three-dimensional solid discontinuous contact model of double-layer lining of shield tunnel based on plastic damage[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 303-311. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602012.htm
[10] 何川, 张建刚, 杨征. 武汉长江隧道管片衬砌结构力学特征模型试验研究[J]. 土木工程学报, 2008, 41(12): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200812017.htm HE Chuan, ZHANG Jian-gang, YANG Zheng. Model test study on mechanical characteristics of segment lining structure of Wuhan Yangtze River Tunnel[J]. China Civil Engineering Journal, 2008, 41(12): 85-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200812017.htm
[11] FENG Kun, HE Chuan, FANG Yong, et al. Study on the mechanical behavior of lining structure for underwater shield tunnel of high-speed railway[J]. Advances in Structural Engineering, 2013, 16(8): 1381-1399.
[12] 村上博智, 小泉. 二次覆工で补强されたシ一ルド グメントリングの拳动について[J]. 土木学会论文集, 1987(388): 85-93. Murakami HIROTOMO, KOIZUMI . On the movement of shieldment ring that was reinforced by the secondary lining[J]. Proceedings of JSCE, 1987(388): 85-93. (in Japanese)
[13] Wunfah NASRI A, Della Posta MICHAEL P. Full scale testing of tunnel liner[C]//Towards New Worlds inTunnelling. 1992: 315-320.
[14] MURAKAMI H, KOIZUMI A. Behavior of shield segment ring reinforced by secondary lining[J]. Journal of Geotechnical Engineering, 1987, 388: 85-94. (in Japanese)
[15] TAKAMATSU N, MURAKAMI H, KOIZUMI A. A study on the bending behavior in the longitudinal direction of shield tunnels with secondary linings[C]//Proceedings of the International Congress on Towards New World in Tunnellings, 1992, Acapulco: 277-285.
[16] PAN Y W, DONG J J. Time-dependent tunnel convergence: I formulation of the model[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1991, 28(6): 469-475.
[17] 刘志春, 李文江, 朱永全. 软岩大变形隧道二次衬砌施作时机探讨[J]. 岩石力学与工程学报, 2008, 27(3): 580-588. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200803020.htm LIU Zhi-chun, LI Wen-jiang, ZHU Yong-quan, et al. Discussion on the timing of secondary lining construction in soft rock large deformation tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 580-588. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200803020.htm
[18] 许建聪, 周泉吉. 软弱破碎围岩隧道二次衬砌施作的合理时机判别研究[J]. 系统仿真技术, 2014, 10(3): 197-202, 238. XU Jian-cong, ZHOU Quan-ji. Study on reasonable timing discrimination of secondary lining of soft and broken surrounding rock tunnel[J]. System Simulation Technology, 2014, 10(3): 197-202, 238. (in Chinese)
[19] 徐国文, 王士民, 代光辉, 等. 基于内外分区割槽方式的盾构隧道接头环向模拟方法研究[J]. 铁道学报, 2016, 38(4): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201604017.htm XU Guo-wen, WANG Shi-min, DAI Guang-hui, et al. Research on the circumferential simulation method of shield tunnel joint based on internal and external divisional slotting method[J]. Journal of the China Railway Society, 2016, 38(4): 90-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201604017.htm
[20] 鉄道総合技術研究所. 鉄道構造物等設計標準·同解説(シルードトンネル)[M]. 东京: 丸善株式会社, 1997. Railway Comprehensive Technology Research Institute. Standard and explanation for railwaystructures design (shield tunnel)[M]. Tokyo: The Maruzen Corporation, 1997. (in Japanese)
[21] 王士民, 姚佳兵, 何祥凡, 等. 水压对盾构管片衬砌力学特征与破坏形态的影响模型试验研究[J]. 土木工程学报, 2018, 51(4): 111-120. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201804014.htm WANG Shi-min, YAO Jia-bing, HE Xiang-fan, et al. Model test study on the influence of water pressure on mechanical characteristics and failure modes of shield lining[J]. China Civil Engineering Journal, 2018, 51(4): 111-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201804014.htm