Loading [MathJax]/extensions/MathZoom.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

降雨对沟谷状黄土高填方地基增湿影响研究

朱才辉, 李宁

朱才辉, 李宁. 降雨对沟谷状黄土高填方地基增湿影响研究[J]. 岩土工程学报, 2020, 42(5): 845-854. DOI: 10.11779/CJGE202005006
引用本文: 朱才辉, 李宁. 降雨对沟谷状黄土高填方地基增湿影响研究[J]. 岩土工程学报, 2020, 42(5): 845-854. DOI: 10.11779/CJGE202005006
ZHU Cai-hui, LI Ning. Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845-854. DOI: 10.11779/CJGE202005006
Citation: ZHU Cai-hui, LI Ning. Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845-854. DOI: 10.11779/CJGE202005006

降雨对沟谷状黄土高填方地基增湿影响研究  English Version

基金项目: 

国家自然科学基金项目 51678484

国家留学基金委项目 CSC:201808610061

西安理工大学省部共建西北旱区生态水利国家重点实验室 2019KJCXTD-12

详细信息
    作者简介:

    朱才辉(1983—),男,陕西商南人,博士,副教授,主要从事黄土力学与工程等方面的教学与研究工作。E-mail: zhucaihui123@163.com

  • 中图分类号: TU444

Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region

  • 摘要: 研究高填方地基在降雨条件下的入渗规律和增湿变形问题,对黄土沟壑区高填方的工后沉降形成机制探索和防排水设计具有重要意义。以某黄土高填方工程为背景,开展了填方区原位沉降监测和非饱和土的水–力特性室内试验,并基于流–固耦合数值方法,研究了不同降雨类型和不同压实度下高填方地基的入渗规律和增湿变形特性。结果表明:①黄土高填方地基因压实度不均和降雨类型差异,降雨影响深度为地表下2.0~7.0 m;②强降雨(暴雨、大雨)引起的增湿变形比为1.6%,大于中雨的1.2%和小雨的0.3%,不同压实度下(λ为0.88,0.93,0.98)强降雨引起的填方体增湿变形比分别为1.8%,1.5%,1.3%,采取适当的防排水措施对减小高填方地基增湿沉降的具有重要意义;③强降雨会引起填挖方交界面处产生过量的差异增湿沉降和剪切应变突变,这是导致填挖方交界处出现开裂和水毁的主要根源。
    Abstract: Investigating the infiltration law and moistening deformation (MD) of high fill embankment (HFE) under rainfall infiltration (RI) conditions is of great significance for the exploration of the formation mechanism of post-construction settlement and the design of water drainage for high fill in the loess gully area. Based on a loess high fill project, the in-situ settlement monitoring of the fill area and the water-force characteristic experiments of unsaturated soil are carried out. The fluid-solid coupling numerical method is employed to study the infiltration law and MD characteristics of HFE under different rainfall types and compaction degrees. The results show that: (1) Because of the unevenness of compaction degree and rainfall type, the RI depth below the surface of HFE changes from 2.0 m to 7.0 m. (2) The MD ratio caused by heavy RI (storm, heavy rain) is 1.6%, which is greater than 1.2% of moderate rain and 0.3% of light rain. The MD ratios caused by heavy rainfall under different compaction degrees (λ=0.88, 0.93 and 0.98) are 1.8%, 1.5% and 1.3%, respectively. It indicates that the appropriate waterproofing and drainage measures are important to reduce the MD of HFE. (3) Heavy RI can cause excessive MD differences and shear strain mutations at the interface of the fill and the original foundation, which are the main sources of cracking and water damage at the junction of the fill and the original foundation.
  • 图  1   某沟谷区黄土高填方地基裂缝及水毁现象

    Figure  1.   Cracks and water damage of HFE in loess gully region

    图  2   某高填方地基变形监测点布设示意图

    Figure  2.   Monitoring points of a loess HFE

    图  3   高填方顶部工后沉降速率曲线

    Figure  3.   Settlement rates of surface of HFE

    图  4   有无降雨影响下的沉降速率及增湿变形曲线对比

    Figure  4.   Settlement rates and MD curves by considering RI or not

    图  5   高填方地基深层含水率随深度变化曲线

    Figure  5.   Variation of water content with depth of HFE

    图  6   黄土土水特征及渗透特性

    Figure  6.   Soil water characteristics of different types of loess

    图  7   增湿条件下压实黄土力学参数变化规律

    Figure  7.   Mechanical parameters of compacted loess under moistening conditions

    图  8   二级马道断面有限元网格

    Figure  8.   Finite element model for section of second berm

    图  9   暴雨工况下高填方地基降雨入渗水分场分布

    Figure  9.   Water content fields of HFE under storm

    图  10   大雨工况下高填方地基降雨入渗水分场分布

    Figure  10.   Water content fields of HFF under heavy rain

    图  11   中雨工况下高填方地基降雨入渗水分场分布

    Figure  11.   Water content fields of HFF under moderate rain

    图  12   小雨工况下高填方地基降雨入渗水分场分布

    Figure  12.   Water content fields of HFF under light rain

    图  13   暴雨下填方地基增湿变形等值线图

    Figure  13.   Isogram of MD under rainstorm

    图  14   暴雨工况下填挖方交界面处水平剪切应变等值线图

    Figure  14.   Isogram of gorizontal shear strain under rainstorm

    图  15   压实度λ=0.88时填方地基增湿变形等值线图(暴雨工况)

    Figure  15.   Isogram of MD of HFE when λ=0.88 under rainstorm

    图  16   压实度λ=0.98时填方地基增湿变形等值线图(暴雨工况)

    Figure  16.   Isogram of MD of HFE when λ=0.98 under rainstorm

    表  1   高填方地基原状土物理指标

    Table  1   Physical indices of undisturbed soil in HFE

    土层名称含水率w/%干密度ρd/(g·cm-3)孔隙比e0液限wL/%塑限wP/%
    Q3黄土13.31.480.82624.916.0
    Q2黄土21.91.650.65628.817.3
    粉质黏土22.01.640.66329.917.5
    下载: 导出CSV

    表  2   不同状态下黄土V-G模型参数

    Table  2   V-G model parameters of compacted loess

    a/kPamnθs/%θr/%Ks/(10-6m·d-1)ρd/(g·cm-3)λ
    38.00.381.647.58.030001.65原状Q2
    12.00.441.847.111.52310001.48原状Q3
    22.20.784.652.19.56301.650.88
    23.80.743.949.610.44101.690.90
    28.60.693.246.711.12101.750.93
    29.40.612.643.111.81401.790.95
    32.30.481.939.512.8701.840.98
    下载: 导出CSV

    表  3   原状土力学参数

    Table  3   Mechanical parameters of undisturbed soil

    土层含水率天然含水率饱和状态
    c/kPaφ/(°)Es0.1-0.2/MPa泊松比μc/kPaφ/(°)
    原状Q2黄土56.822.57.40.3537.319.1
    原状Q3黄土28.622.56.90.3820.518.8
    粉质黏土N2b108.220.76.50.3383.818.8
    下载: 导出CSV

    表  4   不同压实度下地表增湿沉降量

    Table  4   MD under different compaction degrees  (mm)

    雨型λ=0.88λ=0.93λ=0.98
    断面A断面B断面A断面B断面A断面B
    暴雨35.85.030.04.225.83.5
    大雨98.84.881.93.868.92.6
    中雨82.94.068.83.357.81.8
    小雨12.90.810.40.68.80.5
    下载: 导出CSV
  • [1] 徐明, 宋二祥. 高填方长期工后沉降研究的综述[J]. 清华大学学报(自然科学版), 2009, 49(6): 786-789. doi: 10.3321/j.issn:1000-0054.2009.06.002

    XU Ming, SONG Er-xiang. Review of long-term setting of high fills[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(6): 786-789. (in Chinese) doi: 10.3321/j.issn:1000-0054.2009.06.002

    [2] 葛苗苗, 李宁, 张炜, 等. 黄土高填方沉降规律分析及工后沉降反演预测[J]. 岩石力学与工程学报, 2017, 36(3): 745-753. doi: 10.13722/j.cnki.jrme.2016.0014

    GE Miao-miao, LI Ning, ZHANG Wei, et al. Settlement behavior and inverse prediction of post-construction settlement of high filled loess embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 745-753. (in Chinese) doi: 10.13722/j.cnki.jrme.2016.0014

    [3] 姚仰平, 祁生钧, 车力文. 高填方地基工后沉降计算[J]. 水力发电学报, 2016, 35(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201603001.htm

    YAO Yang-ping, QI Sheng-jun, CHE Li-wen. Computational method of post-construction settlement for high-fill embankments[J]. Journal of Hydroelectric Engineering, 2016, 35(3): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201603001.htm

    [4] 罗汀, 刘引, 韩黎明, 等. 高填方机场工后沉降监测及数据分析[J]. 中国民航大学学报, 2017, 35(3): 27-32. doi: 10.3969/j.issn.1674-5590.2017.03.007

    LUO Ting, LIU Yin, HAN Li-ming, et al. Post-construction settlement monitoring and data analysis of high filling engineering of airport[J]. Journal of Civil Aviation University of China, 2017, 35(3): 27-32. (in Chinese) doi: 10.3969/j.issn.1674-5590.2017.03.007

    [5] 朱才辉, 李宁, 刘明振, 等. 吕梁机场黄土高填方地基工后沉降时空规律分析[J]. 岩土工程学报, 2013, 35(2): 293-301. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302015.htm

    ZHU Cai-hui, LI Ning, LIU Ming-zhen. Spatiotemporal regularity analysis on the post-construction settlement of loess high filled foundation of Lüliang Airport[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 293-301. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302015.htm

    [6] 沈细中, 刘隆斌, 陈敏, 等. 恶劣环境条件下高填方设计关键技术问题[J]. 重庆建筑大学学报, 2003, 25(2): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200302014.htm

    SHEN Xi-zhong, LIU Long-bin, CHEN Min, et al. Key technical issues in project design of tall earth fill under abominable surroundings[J]. Journal of Chongqing Jianzhu University, 2003, 25(2): 67-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200302014.htm

    [7] 张继文, 于永堂, 李攀, 等. 黄土削峁填沟高填方地下水监测与分析[J]. 西安建筑科技大学学报(自然科学版), 2016, 48(4): 477-483. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201604004.htm

    ZHANG Ji-wen, YU Yong-tang, LI Pan, et al. Groundwater monitoring and analysis of high fill foundation in loess hilly-gully region[J]. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2016, 48(4): 477-483. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201604004.htm

    [8] 朱才辉, 李宁. 黄土高填方机场地基中暗穴扩展对道面变形分析[J]. 岩石力学与工程学报, 2015, 34(1): 198-206. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501022.htm

    ZHU Cai-hui, LI Ning. Analysis of airstrip deformation due to expansion of hidden cavities in loess filled high embankement[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 198-206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501022.htm

    [9]

    TU X B, KWONG A K L, DAI F C, et al. Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides[J]. Engineering Geology, 2009, 105(1/2): 134-150.

    [10] 黄雪峰, 陈正汉, 哈双, 等. 大厚度自重湿陷性黄土场地湿陷变形特征的大型现场浸水试验研究[J]. 岩土工程学报, 2006, 28(3): 382-389. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200603023.htm

    HUANG Xue-feng, CHEN Zheng-han, HA Shuang, et al. Large area field immersion test on characteristics of deformation of self weight collapse loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 382-389. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200603023.htm

    [11] 姚志华, 黄雪峰, 陈正汉, 等. 兰州地区大厚度自重湿陷性黄土场地浸水试验综合观测研究[J]. 岩土工程学报, 2012, 34(1): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201003.htm

    YAO Zhi-hua, HUANG Xue-feng, CHEN Zheng-han, et al. Comprehensive soaking tests on self-weight collapse loess with heavy section in Lanzhou region[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 65-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201003.htm

    [12] 赵彦旭. 压实黄土增湿变形的非饱和土力学研究[D]. 兰州: 兰州大学, 2010.

    ZHAO Yan-xu. Unsaturated Soil Mechanics Characteristics Compacted Loess Moistening Deformation[D]. Lanzhou: Lanzhou University, 2010. (in Chinese)

    [13]

    ZHOU Y F, THAM L G., YAN W M, et al. Laboratory study on soil behavior in loess slope subjected to infiltration[J]. Engineering Geology, 2014, 183: 31-38.

    [14] 杨校辉, 朱彦鹏, 周勇, 等. 山区机场高填方边坡滑移过程时空监测与稳定性分析[J]. 岩石力学与工程学报, 2016, 35(增刊2): 3977-3990. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2059.htm

    YANG Xiao-hui, ZHU Yan-peng, ZHOU Yong, et al. Time-space monitoring and stability analysis of high fill slope slip process at a airport in mountain region[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3977-3990. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2059.htm

    [15]

    WU L Z, ZHOU Y, SUN P, et al. Laboratory characterization of rainfall-induced loess slope failure[J]. Catena, 2017, 150: 1-8.

    [16]

    ZHANG Ga, WANG Rui, QIAN Jiyun, et al. Effect study of cracks on behavior of soil slope under rainfall conditions[J]. Soils and Foundations, 2012, 52(4): 634-643.

    [17]

    NORAMBUENA-CONTRERAS J, ARBAT G, GARCÍA NIETO P J, et al. Nonlinear numerical simulation of rainwater infiltration through road embankments by FEM[J]. Applied Mathematics and Computation, 2012, 219: 1843-1852.

    [18] 梁燕, 赵桂娟, 谢永利, 等. 黄土增湿变形的数值模型[J]. 建筑科学与工程学报, 2007, 24(3): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200703011.htm

    LIANG Yan, ZHAO Gui-juan, XIE Yong-li, et al. Numerical model of loess moistening deformation[J]. Journal of Architecture and Civil Engineering, 2007, 24(3): 43-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200703011.htm

    [19] 吴文彪, 郑俊杰, 曹文昭. 考虑含水率影响的压实黄土路堤稳定性研究[J]. 岩土力学, 2015, 36(增刊1): 542-546. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1094.htm

    WU Wen-biao, ZHENG Jun-jie, CAO Wen-zhao. Study of stability of compacted loess embankment considering effect of water content[J]. Rock and Soil Mechanics, 2015, 36(S1): 542-546. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1094.htm

    [20]

    VAN Genuchten M. A closed form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x

    [21]

    FREDLUND D G, XING A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(3): 521-532.

  • 期刊类型引用(19)

    1. 杨岳峰. 降雨入渗诱发沟谷区域高填方边坡工程失稳案例分析. 福建建设科技. 2025(01): 45-49 . 百度学术
    2. 葛苗苗,何璇,谷川,李宁,刘乃飞. 压缩及增减湿作用下非饱和黄土细观结构演化规律研究. 工程地质学报. 2024(02): 397-409 . 百度学术
    3. 于永堂,孙茉,曹静远,朱建民,张龙. 黄土高填方场地水分迁移规律. 长江科学院院报. 2024(07): 103-109 . 百度学术
    4. 冯笑瑞,朱兴华,孙恒飞,俱量,温瑞祥,肖永玖. 泾阳浅层黄土细微观孔隙结构试验. 水文地质工程地质. 2024(06): 138-148 . 百度学术
    5. 王弘起,邱明明,孙杰龙,李大卫,郑隆君,田宇轩. 物理性质对黄土抗剪强度指标的影响规律. 科技通报. 2023(04): 38-44+61 . 百度学术
    6. 祁生文,侯晓坤,于永堂,张亚国,胡燮,张琳鑫,李志清,郭松峰,张帆宇,李同录,彭建兵. 压实黄土场地湿陷沉降机理与黄土高原平山造城适宜性. 科学通报. 2023(14): 1844-1860 . 百度学术
    7. 杨静,李尚广,伍东卫,蒋中明,杨讯华. 考虑降雨影响的高填路基稳定性模糊综合评价研究. 交通科技. 2023(03): 15-19+33 . 百度学术
    8. 蔡金涛. 地基沉降工况下配电网杆塔应变实时监测及预警技术研究. 电工技术. 2023(15): 97-101 . 百度学术
    9. Xiaokun Hou,Shengwen Qi,Yongtang Yu,Jianguo Zheng. Long-Term Settlement Characterization of High-Filling Foundation in the Mountain Excavation and City Construction Area of the Yan ' an New District, China. Journal of Earth Science. 2023(06): 1908-1915 . 必应学术
    10. 马云峰,彭森,葛苗苗,朱才辉. 黄土高填方地基上部建筑施建控制标准研究. 防灾减灾工程学报. 2023(06): 1415-1424 . 百度学术
    11. 于永堂,张继文,董宝志,唐丽云,黄鑫,曹静远. 黄土填方场地强夯与分层碾压施工过程的内部沉降监测方法. 地基处理. 2023(S2): 54-61+68 . 百度学术
    12. 蔡怀恩,张继文,李鹏军,刘帅,梁小龙. 黄土挖填方场地形成的关键岩土工程问题. 岩土工程技术. 2022(01): 22-25 . 百度学术
    13. 赵志强,戴福初,闵弘,涂新斌. 黄土中灌溉水入渗过程的现场试验研究. 岩土工程学报. 2022(03): 569-575 . 本站查看
    14. 常银联. 湿陷性黄土地基排土场稳定性分析. 露天采矿技术. 2022(02): 29-32 . 百度学术
    15. 梁晨,余美娴,李金格,刘丽萍,梁军. 黄土地区高填方路基沉降处置措施. 陕西水利. 2022(09): 94-96 . 百度学术
    16. 赵文赫,杨秀娟,王宝仲,樊恒辉,孟敏强,朱振. 降雨作用下黄土填方区交界面水分迁移及沉降规律研究. 岩土工程学报. 2022(09): 1710-1720+10-11 . 本站查看
    17. 金鑫,张松林,邱子涵,张猛,屈永龙. 水泥浆液在黄土中注浆扩散的现场试验研究. 西安工业大学学报. 2021(03): 292-299 . 百度学术
    18. 祝艳波,李红飞,巨之通,兰恒星,刘振谦,韩宇涛. 黄土抗剪强度与耐崩解性能综合改良试验研究. 煤田地质与勘探. 2021(04): 221-233 . 百度学术
    19. 黄泰坤,王元战,姜金勇,贾晗,刘少增. 强降雨入渗下临海软土开挖边坡稳定性分析. 中国港湾建设. 2020(06): 19-24 . 百度学术

    其他类型引用(13)

图(16)  /  表(4)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  22
  • PDF下载量:  273
  • 被引次数: 32
出版历程
  • 收稿日期:  2019-03-16
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-04-30

目录

    /

    返回文章
    返回