Optimal drilling pressure of cone-tipped cutters based on characteristic size of hard and brittle rocks
-
摘要: 为提高反井钻机锥齿滚刀对硬脆性岩石的破岩效率,需要得到最优钻压,分析岩碴粒径是研究反井钻机锥齿滚刀最优钻压的重要手段。采用直线破岩试验方法,使用锥齿滚刀破碎硬脆性大理岩试样,并通过Rosin-Rammler分布函数对岩碴粒径分布情况进行分析。通过对比多个钻压下岩碴粒径分布的累计概率曲线、特征粒径以及比能,得到钻压与岩碴特征粒径分布规律、特征粒径与比能的关系。当特征粒径最大和比能最小时,分别得到大理岩试样的最优钻压为34.45 kN和35.19 kN,因此最优钻压约为35 kN。据此,建议在实际应用中可将钻压设为35 kN。还分析了在相同钻压下,采用锥齿滚刀破碎硬脆性大理岩和花岗岩时的粒径分布关系,分析得到两种单轴抗压强度岩碴的特征粒径。研究结果表明特征粒径能够反映锥齿滚刀的破岩效果;硬脆性岩石的破碎过程符合黎金格的新表面说,特征粒径与比能呈近似反比关系;在一定钻压范围内,相同钻压下花岗岩特征粒径均大于大理岩,且特征粒径差距随钻压增加而增大。Abstract: In order to improve the rock-breaking efficiency of raising boring cutters under hard brittle rock, it is necessary to obtain the optimal drilling pressure. The analysis of the size of rock ballast is an important means. The cone-tipped cutter is used to break hard brittle marble samples on the LCM testing machine, and the rock ballast is analyzed by means of the Rosin-Rammler distribution. By comparing the cumulative probability curve of size distribution of rock ballast, the characteristic size and specific energy under multiple drilling pressures, the relationship among drilling pressure, the characteristic size of rock ballast and specific energy are obtained. The optimum drilling pressure of marble samples is 34.45 and 35.19 kN respectively when the characteristic size is the largest and the specific energy is the smallest, so it is suggested that the drilling pressure should be set as 35 kN. The size distribution between hard brittle marble and granite is also analyzed under the same drilling pressure, and the characteristic sizes are obtained under different uniaxial compressive strengths. The results show that the characteristic size can reflect the rock-breaking effect of cone-tipped cutter, and the rock-breaking process conforms to the new surface theory of Rittinger. The characteristic size and specific energy are inversely proportional. Within a certain range of drilling pressure, the characteristic size of granite is larger than that of hard brittle marble, and the difference of characteristic size increases with the increase of drilling pressure.
-
-
表 1 不同钻压下硬脆性大理岩的特征粒径
Table 1 Characteristic sizes of hard brittle marble under different drilling pressures
钻压/kN 特征粒径/mm 20 0.3067 25 0.5219 30 0.6012 35 2.0563 40 0.4228 45 0.3627 50 0.2023 55 0.2378 -
[1] 徐广龙, 刘志强. 琅琊山抽水蓄能电站竖井反井钻井施工技术[J]. 建井技术, 2006(5): 38-39, 24. XU Guang-long, LIU Zhi-qiang. Construction technology of raise boring in langyashan pumped storage power station[J]. Mine Construction Technology, 2006(5): 38-39, 24. (in Chinese)
[2] 彭爱华, 吴世斌, 唐鹏飞. 白鹤滩水电站左岸尾水排风竖井大直径反井钻机一次成型施工技术的应用[J]. 水利水电技术, 2015, 46(增刊2): 35-37. PENG Ai-hua, WU Shi-bin, TANG Peng-fei, et al. Application of one-stage forming construction technology of large diameter raising boring for tailrace ventilation shaft on left bank of baihetan hydropower station[J]. Water Resources and Hydropower Engineering, 2015, 46(S2): 35-37. (in Chinese)
[3] 周辉, 杨艳霜, 肖海斌, 等. 硬脆性大理岩单轴抗拉强度特性的加载速率效应研究——试验特征与机制[J]. 岩石力学与工程学报, 2013, 32(9): 1868-1875. ZHOU Hui, YANG Yan-shuang, XIAO Hai-bin, et al. Research on loading rate effect of tensile strength property of hard brittle marble—test characteristics and mechanism[J]. Journal of Rock Mechanics and Engineering, 2013, 32(9): 1868-1875. (in Chinese)
[4] HAYATI Y, ÖZDOĞAN M V, ÖZFIRAT M K. A sampling study on rock properties affecting drilling rate index (DRI)[J]. Journal of African Earth Sciences, 2018, 141: 1-8.
[5] 闫长斌, 姜晓迪, 刘章恒, 等. 基于岩碴粒径分布规律的TBM破岩效率分析[J]. 岩土工程学报, 2019, 41(3): 466-474. YAN Chang-bin, JIANG Xiao-di, LIU Zhang-heng, et al. Rock-breaking efficiency of TBM based on particle-size distribution of rock detritus[J]. Journal of Geotechnical Engineering, 2019, 41(3): 466-474. (in Chinese)
[6] 孙金山, 卢文波, 苏利军, 等. 基于TBM掘进参数和渣料特征的岩体质量指标辨识[J]. 岩土工程学报, 2008, 30(12): 1847-1854. SUN Jin-shan, LU Wen-bo, SU Li-jun, et al. Rock mass rating identification based on TBM performance parameters and muck characteristics[J]. Journal of Geotechnical Engineering, 2008, 30(12): 1847-1854. (in Chinese)
[7] 宋克志, 季立光, 袁大军, 等. 盘形滚刀切割岩碴粒径分布规律研究[J]. 岩石力学与工程学报, 2008(增刊1): 3016-3022. SONG Ke-zhi, JI Li-guang, YUAN Da-jun, et al. Research on distribution regularities of grain size of rock detritus from discoid cutters[J]. Journal of Rock Mechanics and Engineering, 2008(S1): 3016-3022. (in Chinese)
[8] 周振国. 岩碴观测对硬岩TBM施工的指导意义[J]. 现代隧道技术, 2002(3): 13-16. ZHOU Zhen-guo. Guiding significance of rock ballast observation for TBM construction in hard rock[J]. Modern Tunneling Technology, 2002(3): 13-16. (in Chinese)
[9] 王述红, 王存根, 赵贺兴, 等. 基于岩石破碎体积的滚刀效率评估模型[J]. 东北大学学报(自然科学版), 2016, 37(4): 554-557, 562. WANG Shu-hong, WANG Cun-ken, ZHAO He-xing, et al. Cutter efficiency assessment model based on broken rock volume[J]. Journal of Northeast University (Natural Science Edition), 2016, 37(4): 554-557, 562. (in Chinese)
[10] 陈文莉, 福井胜则, 大久保诚介. 关于掘进机械破碎岩片的研究[J]. 岩石力学与工程学报, 2003(6): 1037-1043. CHEN Wen-li, FUKUI K, OKUBO S, et al. Study on the detritus from different excavation machines and methods[J]. Journal of Rock Mechanics and Engineering, 2003(6): 1037-1043. (in Chinese)
[11] 孙金山, 陈明, 陈保国, 等. TBM滚刀破岩过程影响因素数值模拟研究[J]. 岩土力学, 2011, 32(6): 1891-1897. SUN Jin-shan, CHEN Ming, CHEN Bao-guo, et al. Numerical simulaiton of influence factors for rock fragmentation by TBM cutters[J]. Geotechnical Mechanics, 2011, 32(6): 1891-1897. (in Chinese)
[12] 刘立鹏, 汪小刚, 刘海舰, 等. TBM滚刀破岩机理与影响因素数值模拟研究[J]. 中国水利水电科学研究院学报, 2017, 15(5): 346-353, 359. LIU Li-peng, WANG Xiao-gang, LIU Hai-jian, et al. Numerical simulation research on rock breakage mechanism and influence tbm cutters[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15(5): 346-353, 359. (in Chinese)
[13] 方诗圣, 曾志远, 孟益平, 等. 镶齿滚刀破碎岩渣粒径分布规律研究[J]. 建井技术, 2017, 38(5): 28-31. FANG Shi-sheng, ZHENG Zhi-yuan, MENG Yi-ping, et al. Study on particle size distribution law of rock cuttings by inserted rolling cutters[J]. Mine Construction Technology, 2017, 38(5): 28-31. (in Chinese)
[14] 赵小军, 康鑫, 潘飞飞, 等. 孕镶金刚石钻头破碎花岗岩岩屑粒径分布研究[J]. 金刚石与磨料磨具工程, 2019, 39(1): 84-88. ZHAO Xiao-jun, KANG Xin, PAN Fei-fei, et al. Study on particle size distribution of fractured granite cuttings with impregnated diamond bit[J]. Diamond & Abrasives Engineering, 2019, 39(1): 84-88. (in Chinese)
[15] MANOJ K, DANIAL J A. Prediction of drillability of rocks with strength properties using a hybrid GA-ANN technique[J]. Geotechnical and Geological Engineering, 2016, 34(2): 605-620.
[16] SAEED A, GHOLAM R L, MOHAMMAD G, et al. Evaluating the relationships between NTNU/SINTEF drillability indices with index properties and petrographic data of hard igneous rocks[J]. Rock Mechanics and Rock Engineering, 2017, 50(11): 2929-2953.
[17] 汪莹莹. 不同齿形的镶齿滚刀破岩效果模拟仿真[D]. 合肥: 合肥工业大学, 2017. WANG Ying-ying. Numerical Analysis on Rock Breaking Effect with Different Inserted Tooth Rolling Cutters[D]. Hefei: Hefei University of Technology, 2017. (in Chinese)
[18] 吴帆, 殷丽君, 张浩, 等. 镶齿滚刀破岩机理及效率的旋转破岩试验[J]. 中国公路学报, 2018, 31(10): 150-159. WU Fan, YIN Li-jun, ZHANG Hao, et al. Rock fragmentation mechanism and efficiency under inserted-tooth roller cutter by rotary cutting test[J]. Journal of China Highway, 2018, 31(10): 150-159. (in Chinese)
[19] 徐小荷, 余静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984. XU Xiao-he, YU Jing. Rock Fragmentation[M]. Beijing: Coal Industry Publishing House, 1984. (in Chinese)
[20] 张中俭, 杨曦光, 叶富建, 等. 北京房山大理岩的岩石学微观特征及风化机理讨论[J]. 工程地质学报, 2015, 23(2): 279-286. ZHANG Zhong-jian, YANG Xi-guang, YE Fu-jian, et al. Microscopic characteristics of petrography and discus-sion on weathering mechanism of fangshan marble in Beijing[J]. Journal of Engineering Geology, 2015, 23(2): 279-286. (in Chinese)
[21] 张宗贤, 寇绍全. 固体力学中侵入问题的若干新进展[J]. 力学进展, 1992(2): 183-193. ZHANG Zong-xian, KOU Shao-quan. Some new advances in invasion problems in solid mechanics[J]. Progress in Mechanics, 1992(2): 183-193. (in Chinese)
-
期刊类型引用(2)
1. 赵瑞,代登辉,武广繁,沈凡茗,薛凯. 考虑土塞效应管桩的竖向动力响应解析解. 河南科学. 2025(05): 625-634 . 百度学术
2. 刘浩,吴文兵,蒋国盛,梅国雄,梁荣柱,官文杰. 土塞效应对管桩低应变测试视波速的影响研究. 岩土工程学报. 2019(02): 383-389 . 本站查看
其他类型引用(13)