Microstructure of silt with different clay contents
-
摘要: 粉土在中国广泛分布,粉土液化现象的发生与粉土微观结构息息相关。将粉土的宏观抗液化特性与微观结构特征结合起来,分析了不同黏粒含量粉土微观结构的变化规律。利用扫描电子显微镜(SEM)获取不同黏粒含量粉土的微观结构图像并运用Image-Pro Plus(IPP)图像处理软件对粉土微观参数进行计算和分析。结果表明,随着黏粒含量逐渐增加,粉土内部结构逐渐紧密,颗粒接触方式由直接线或面接触转变为点接触,孔隙类型由架空孔隙向镶嵌孔隙转变;孔隙面积随孔径增大而增大,微、小和中孔隙的数量随黏粒含量的增加先增大后减少;随着黏粒含量的增加,微、小和中孔隙形态基本保持不变,但大孔隙的丰度和分形维数显著增加,结构的复杂程度增加。通过不同黏粒含量微观结构的变化规律,揭示了黏粒含量对粉土微观结构的影响以及粉土宏观抗液化特性的微观机制。Abstract: The silt is widely distributed in China and the occurrence of liquefaction is closely related to its microstructure. The macroscopic liquefaction characteristics and microstructural characteristics of the silt are combined to analyze the change of the microstructure of the silt with different clay contents. The microstructural images under different clay contents are obtained by the scanning electron microscope (SEM), and the Plus Image-Pro (IPP) image processing software is used to calculate and analyze the micro parameters of the silt. The results show that the interior structure of the silt becomes close with the gradually increasing clay content. The contact of particles transforms from the direct line or surface transformation into the point contact, and for the pore space types the overhead pore becomes the mosaic one. The pore area increases with the increase of its radius, and the number of micro, small and medium pores increases at first and decreases with the increase of clay particle content. The morphology of the micro, small and medium pores is essentially the same, but the abundance and fractal dimension of macropores increase significantly, and the complexity of the structure increases. Through change of the microstructure of the silt with different clay contents, the influences of clay content on its microstructure and micro mechanism of the macro liquefaction characteristics are revealed.
-
Keywords:
- silt /
- scanning electron microscope test /
- microstructure /
- clay content /
- liquefaction resistance
-
-
表 1 粉土中各种矿物含量
Table 1 Contents of various minerals in silt
矿物种类 石英 长石 白云石 白云母 蒙脱石 矿物含量/% 63.5 8.4 6.7 17.3 4.1 表 2 原料土的粒径分布
Table 2 Grain distribution of original soils
土类 细砂粒含量/%(0.25~0.075 mm) 粉粒含量/%(0.075~0.005 mm) 黏粒含量/%(<0.005 mm) 细砂 100 0 0 原料粉土 42.0 54.6 4.4 黏土 0 76.3 23.7 表 3 原料土的塑性指数
Table 3 Plastic indices of original soils
土类 液限wL/% 塑限wP/% 塑性指数IP 原料粉土 29.9 23.4 6.5 黏土 56.3 37.7 18.6 表 4 粉土试样的粒径分布
Table 4 Grain-size distribution of test samples
土样组别 细砂粒含量/%(0.25~0.075 mm) 粉粒含量/%(0.075~0.005 mm) 黏粒含量/%(<0.005 mm) 1 30 68 2 2 30 64 6 3 30 62 8 4 30 61 9 5 30 60 10 6 30 58 12 7 30 55 15 -
[1] 阮永芬, 侯克鹏. 粉土地震液化判别方法研究的现状和实际存在的问题[J]. 昆明理工大学学报(理工版), 2000, 25(1): 64-67. doi: 10.3969/j.issn.1007-855X.2000.01.017 RUAN Yong-fen, HOU Ke-peng. The development trend and existed problem of sandy loam's earthquake liquefaction[J]. Journal of Kunming University of Science and Technology (Science and Technology), 2000, 25(1): 64-67. (in Chinese) doi: 10.3969/j.issn.1007-855X.2000.01.017
[2] 李立云, 崔杰, 景立平, 等. 饱和粉土振动液化分析[J]. 岩土力学, 2005, 26(10): 1663-1666. doi: 10.3969/j.issn.1000-7598.2005.10.027 LI Li-yun, CUI Jie, JING Li-ping, et al. Study on liquefaction of saturated silty soil under cyclic loading[J]. Rock and Soil Mechanics, 2005, 26(10): 1663-1666. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.10.027
[3] 王家鼎, 白铭学, 肖树芳. 强震作用下低角度黄土斜坡滑移的复合机理研究[J]. 岩土工程学报, 2001, 23(4): 445-449. doi: 10.3321/j.issn:1000-4548.2001.04.013 WANG Jia-ding, BAI Ming-xue, XIAO Shu-fang, et al. Study on compound mechanism of earthquake-related sliding displacements on gently inclined loss slope[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 445-449. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.04.013
[4] 周晖, 房营光, 禹长江. 广州软土固结过程微观结构的显微观测与分析[J]. 岩石力学与工程学报, 2009, 28(增刊2): 3830-3837. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2081.htm ZHOU Hui, FANG Ying-guang, YU Chang-jiang, et al. Micro-structure observation and analysis of Guangzhou soft soil during consolidation process[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3830-3837. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2081.htm
[5] 牛琪瑛, 裘以惠, 史美筠. 粉土抗液化特性的试验研究[J]. 太原理工大学学报, 1996(3): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY603.001.htm NIU Qi-ying, QIU Yi-hui, SHI Mei-yun. The study and test of liquefaction resistant characteristics of silt[J]. Journal of Taiyuan University of Technology, 1996(3): 5-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY603.001.htm
[6] 曾长女. 细粒含量对粉土液化及液化后影响的试验研究[D]. 南京: 河海大学, 2006. ZENG Chang-nü. Laboratory Test Study on the Influence of Percent Fines on Silt Liquefaction and Post-Liquefaction[D]. Nanjing: Hohai University, 2006. (in Chinese)
[7] 刘雪珠, 陈国兴. 黏粒含量对南京粉细砂液化影响的试验研究[J]. 地震工程与工程振动, 2003, 23(3): 150-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200303023.htm LIU Xue-zhu, CEHN Guo-xing. Experimental study on influence of clay particle content on liquefaction of Nanjing fine sand[J]. Earthquake Engineering and Engineering Vibration, 2003, 23(3): 150-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200303023.htm
[8] 吴建平, 吴世明. 重塑含黏粒砂土的动模量和液化势[J]. 浙江大学学报(自然科学版), 1988, 22(6): 13-19. WU Jian-ping, WU Shi-ming. Dynamic modulus and liquefaction potential of remolded sand with small amount of clay particles[J]. Journal of Zhejiang University(Natural Science), 1988, 22(6): 13-19. (in Chinese)
[9] 周乔勇, 熊保林, 杨广庆, 等. 低液限粉土微观结构试验研究[J]. 岩土工程学报, 2013, 35(增刊2): 439-444. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2075.htm ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, et al. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 439-444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2075.htm
[10] SCHONENBERGER J, MOMOSE T, WAGNER B, et al. Canadian field soils mineral composition by XRD/XRF measurements[J]. International Journal of Thermophysics, 2012, 33(2): 342-362.
[11] 蒋明镜, 李志远, 黄贺鹏, 等. 南海软土微观结构与力学特性试验研究[J]. 岩土工程学报, 2017, 39(增刊2): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2006.htm JIANG Ming-jing, LI Zhi-yuan, HUANG He-ping, et al. Experimental study on microstructure and mechanical properties of seabed soft soil from South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 17-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2006.htm
[12] 张瑞, 张小珑, 汤辉, 等. 土体SEM图像定量分析系统及应用[J]. 江西师范大学学报(自然科学版), 2011, 35(2): 165-169. https://www.cnki.com.cn/Article/CJFDTOTAL-CAPE201102015.htm ZHANG Rui, ZHANG Xiao-long, ZHANG Hui, et al. Soil SEM image analysis system and application[J]. Jiangxi Normal University(Natura Science), 2011, 35(2): 165-169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CAPE201102015.htm
[13] 雷祥义, 王书法. 黄土的孔隙大小与湿陷性[J]. 水文地质工程地质, 1987, 34(5): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198705005.htm LEI Xiang-yi, WANG Shu-fa. Pore size and collapsibility of loess[J]. Hydrogeology Engineering Geology, 1987, 34(5): 15-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198705005.htm
[14] 张先伟, 王常明. 一维压缩蠕变前后软土的微观结构变化[J]. 岩土工程学报, 2010, 32(11): 1688-1694. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201011011.htm ZHANG Xian-wei, WANG Chang-ming. Changes in microstructure before and after the one-dimensional compression creep of soft soil[J]. Geotechnical Engineering, 2010, 32(11): 1688-1694. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201011011.htm
[15] MOORE C A, DONALDSON C F. Quantifying soil microstructure using fractals[J]. Géotechnique, 1995, 45(1): 105-116.