Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

卸荷条件下岩石平行偏置双裂隙的扩展规律研究

周子涵, 陈忠辉, 王建明, 年庚乾, 陈帅, 包敏

周子涵, 陈忠辉, 王建明, 年庚乾, 陈帅, 包敏. 卸荷条件下岩石平行偏置双裂隙的扩展规律研究[J]. 岩土工程学报, 2020, 42(4): 721-730. DOI: 10.11779/CJGE202004015
引用本文: 周子涵, 陈忠辉, 王建明, 年庚乾, 陈帅, 包敏. 卸荷条件下岩石平行偏置双裂隙的扩展规律研究[J]. 岩土工程学报, 2020, 42(4): 721-730. DOI: 10.11779/CJGE202004015
ZHOU Zi-han, CHEN Zhong-hui, WANG Jian-ming, NIAN Geng-qian, CHEN Shuai, BAO Min. Propagation of offset parallel cracks in rock under unloading conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 721-730. DOI: 10.11779/CJGE202004015
Citation: ZHOU Zi-han, CHEN Zhong-hui, WANG Jian-ming, NIAN Geng-qian, CHEN Shuai, BAO Min. Propagation of offset parallel cracks in rock under unloading conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 721-730. DOI: 10.11779/CJGE202004015

卸荷条件下岩石平行偏置双裂隙的扩展规律研究  English Version

基金项目: 

国家重点研发计划项目 2016YFC0801602

国家重点研发计划项目 2017YFC1503103

详细信息
    作者简介:

    周子涵(1995—),男,博士研究生,主要从事边坡灾变机理与岩石断裂力学等方面的研究。E-mail: 18813027369@163.com

  • 中图分类号: TU452

Propagation of offset parallel cracks in rock under unloading conditions

  • 摘要: 岩质边坡中存在着大量的非贯通断续节理,对于开挖扰动下的边坡岩体强度及破坏模式起着重要的控制作用。为了研究边坡岩体在开挖扰动下内部节理裂隙的细观扩展规律,基于叠加原理与Kachanov法,推导了卸荷条件下平行偏置双裂隙的尖端应力强度因子表达式并从理论上分析了多种因素对裂隙间相互作用的影响规律,最后对含平行偏置裂隙的类岩试件进行了卸荷试验,结果表明:①主次裂隙间的裂隙错距或岩桥长度愈小、主裂隙长度愈大,裂隙尖端处的相互作用变化愈剧烈;②随着裂隙倾角的增大,裂隙尖端张拉破坏的趋势愈发明显,而剪切破坏趋势减弱;③裂隙间的岩桥长度越大,应力强度因子放大系数受裂隙倾角的影响越敏感。通过对比理论上不同试件在侧向卸荷条件下的裂隙轴向起裂应力与试验测得的实际起裂应力发现,两者相对误差均在4.7%以内,证明了利用提出的理论方法计算裂隙的临界起裂应力是合理可行的。通过本研究揭示的卸荷条件下平行偏置双裂隙的扩展规律,可对露天矿节理岩质边坡在开挖过程中的细观破坏机制提供一定的理论依据。
    Abstract: The numerous non-penetrating intermittent joints in rock slopes play an important role in controlling the strength and failure mode of rock mass under excavation disturbance. In order to determine the meso-influence laws of intermittent joint interaction in the slope under the action of excavation, using the superposition principle and the Kachanov method, the stress intensity factor of parallel offset double cracks at the tip in rock mass under unloading conditions is calculated, the influences of many factors on the interaction between cracks are theoretically analyzed, and the unloading tests on rock-like specimens with parallel offset cracks are conducted. The results show that: (1) The interaction at the crack tips becomes more severe and sensitive if the length of the main crack larger or the staggered distance between the cracks or the length of rock bridge is shorter. (2) As the inclination angle of cracks increases, the tensile failure gradually increases but shear failure weakens. (3) The sensitivity of the amplification factors of the stress intensity factor affected by the angle is positively correlated with the length of rock bridge. In addition, the axial-initiation stresses of cracks in different specimens theoretically calculated under unloading conditions are compared with the measured ones by tests, and it is found that the relative error between them are all less than 4.7%, revealing that the proposed theoretical formula is a reasonable and feasible method to calculate the axial-initiation stresses of cracks. The propagation laws of the offset parallel cracks in rock under unloading conditions are revealed and are conducive to the studies on meso-failure mechanism of jointed rock slopes in open-pit mines under the action of excavation.
  • 图  1   边坡中不同部位应力分布示意图

    Figure  1.   Sketch of stress in different parts of a slope

    图  2   边坡中“关键块体”开挖前后力学模型示意图

    Figure  2.   Sketch of mechanical models for "key block" in slope before and after excavation

    图  3   卸荷条件下含双裂隙岩体应力状态二次叠加

    Figure  3.   Superposition method of stress state of rock mass with double cracks under unloading condition

    图  4   单轴拉伸作用下的平行偏置裂隙力学模型

    Figure  4.   Mechanical model for a pair of offset parallel cracks

    图  5   裂隙面力的分解(i=1,2)

    Figure  5.   Decomposition of crack force (i=1,2) under uniaxial tension

    图  6   单轴压缩作用下的平行偏置裂隙力学模型及面力等效示意图

    Figure  6.   Mechanical model for a pair of offset parallel cracks under uniaxial compression and equivalent sketch of crack force

    图  7   卸荷条件下含单裂隙岩体应力状态二次叠加

    Figure  7.   Superposition method for stress state of rock mass with a single crack under unloading conditions

    图  8   卸荷条件下应力强度因子放大系数随裂隙错距比的变化规律(s=a

    Figure  8.   Variation of amplification factors of SIF with staggered distance ratio between cracks(s=a

    图  9   卸荷条件下应力强度因子放大系数随岩桥长度比的变化规律(h=a

    Figure  9.   Variation of amplification factors of SIF with length ratio of rock bridge between the cracks under unloading conditions

    图  10   卸荷条件下应力强度因子放大系数随裂隙长度比的变化规律

    Figure  10.   Variation of amplification factors of SIF with crack length ratio under unloading conditions

    图  11   卸荷条件下应力强度因子放大系数随裂隙倾角α的变化规律

    Figure  11.   Variation of amplification factors of SIF with crack angle α under unloading conditions

    图  12   试件尺寸示意图

    Figure  12.   Sketch of specimen dimensions

    图  13   试验装置

    Figure  13.   Experimental devices

    图  14   试验应力路径示意图

    Figure  14.   Sketch of experimental stress path

    图  15   试件1的裂隙扩展过程

    Figure  15.   Crack propagation process of specimen 1

    图  16   试件3的裂隙扩展过程

    Figure  16.   Crack propagation process of specimen 3

    图  17   试件4的裂隙扩展过程

    Figure  17.   Crack propagation process of specimen 4

    图  18   试件7的裂隙扩展过程

    Figure  18.   Crack propagation process of specimen 7

    表  1   应力强度因子放大系数误差分析

    Table  1   Error analysis of amplification factors of SIF

    s/a本文(B)手册(C)相对误差值
    KΙ(b)/KΙ0(b) KΙ(b)/KΙ0(b) KΙ(b)/KΙ0(b) KΙ(b)/KΙ0(b) KΙ(b)/KΙ0(b) KΙ(b)/KΙ0(b) 
    -0.50.85771.12370.87001.13800.06230.0143
    -0.250.99661.12871.01001.14000.05340.0113
    01.10981.12141.12101.13200.01820.0106
    0.251.16621.10631.17001.11200.01380.0057
    0.51.17151.08911.17301.09000.00150.0009
    注:相对误差W1=|CB|,s/a为负值代表裂隙之间有重叠。
    下载: 导出CSV

    表  2   砂岩与试件的力学参数对照表

    Table  2   Mechanical properties of sandstone and specimens

    材料密度/(kg·m-3)单轴抗压强度/MPa单轴抗拉强度/MPa弹性模量/GPa泊松比
    砂岩2000~260020 ~ 2004 ~ 2510 ~ 1000.2 ~ 0.3
    试件235052.325.0615.210.23
    下载: 导出CSV

    表  3   试件中裂隙的相关几何参数

    Table  3   Geometric parameters of cracks in specimens

    试件编号裂隙倾角α/(°)裂隙1长度2a/ mm裂隙2长度2b/mm岩桥长度s/mm裂隙错距h/mm
    1451224-126
    2451224-1212
    3451224-1224
    4451224126
    5451236126
    6301224126
    7751224126
    注:s为负值时代表裂隙之间存在搭接部分。
    下载: 导出CSV

    表  4   卸荷条件下不同试件的裂隙轴向起裂应力

    Table  4   Axial-initiation stresses of cracks in different specimens under unloading conditions

    试件编号起裂位置理论轴向起裂应力σ1t/kN实际轴向起裂应力σ1s/ kN相对误差W2/%
    1主裂隙外尖端89.0385.174.5
    2主裂隙内尖端93.1689.713.8
    3主裂隙内尖端96.1192.134.3
    4次裂隙外尖端85.6483.522.5
    5次裂隙内尖端83.2579.684.5
    6主裂隙内尖端86.2282.334.7
    7次裂隙内尖端97.1794.283.1
    注:W2=|σ1tσ1s|/σ1s
    下载: 导出CSV
  • [1]

    HUANG D, CEN D F, MA G W, et al. Step-path failure of rock slopes with intermittent joints[J]. Landslides, 2015, 12(5): 911-926. doi: 10.1007/s10346-014-0517-6

    [2]

    TANG C A, LIN P, WONG R H C, et al. Analysis of crack coalescence in rock-like materials containing three flaws—Part II: Numerical approach[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(7): 925-939.

    [3]

    BOBET A, EINSTEIN H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 863-888. doi: 10.1016/S0148-9062(98)00005-9

    [4]

    WONG R H C, CHAU K T. The coalescence of frictional cracks and the shear zone formation in brittle solids under compressive stresses[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3): 335.

    [5] 杨圣奇. 断续三裂隙砂岩强度破坏和裂隙扩展特征研究[J]. 岩土力学, 2013, 34(1): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301004.htm

    YANG Sheng-qi. Study of strength failure and crack coalescence behavior of sandstone containing three pre-existing fissures[J]. Rock and Soil Mechanics, 2013, 34(1): 31-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301004.htm

    [6] 赵程, 鲍冲, 田加深, 等. 基于应变局部化的双裂纹岩样贯通模式及强度试验研究[J]. 岩石力学与工程学报, 2015, 34(11): 239-2318. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511015.htm

    ZHAO Cheng, BAO Chong, TIAN Jia-shen, et al. Experimental study of coslescence mode of cracks and strength of rock with double flaws based on strain localization[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2309-2318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511015.htm

    [7] 黄达, 金华辉, 黄润秋. 拉剪应力状态下岩体裂隙扩展的断裂力学机制及物理模型试验[J]. 岩土力学, 2011, 32(4): 997-1002. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201104005.htm

    HUAND Da, JIN Hua-hui, HUANG Run-qiu. Mechanism of fracture mechanics and physical model test of rocks crack expanding under tension-shear stress[J]. Rock and Soil Mechanics, 2011, 32(4): 997-1002. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201104005.htm

    [8] 刘磊, 贾洪彪, 马淑芝. 考虑卸荷效应的岩质边坡断裂损伤模型及应用[J]. 岩石力学与工程学报, 2015, 34(4): 747-754. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504011.htm

    LIU Lei, JIA Hong-biao, MA Shu-zhi. A fracture damage model for rock slopes under unloading and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 747-754. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504011.htm

    [9] 黄润秋. 岩石高边坡发育的动力过程及其稳定性控制[J]. 岩石力学与工程学报, 2008, 27(8): 1525-1544. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200808004.htm

    HUANG Run-qiu. Geodynamical process and stability control of high rock slope development[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1525-1544. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200808004.htm

    [10] 何庆芝, 郦正能. 工程断裂力学[M]. 北京: 北京航空航天大学出版社, 1993.

    HE Qing-zhi, LI Zheng-neng. Engineering Fracture Mechanics[M]. Beijing: Beihang University Press, 1993. (in Chinese)

    [11]

    KACHANOV M. A simple technique of stress analysis in elastic solids with many cracks[J]. International Journal of Fracture, 1985, 28(1): 11-19.

    [12] 席婧仪, 陈忠辉, 朱帝杰, 等. 岩石不等长裂纹应力强度因子及起裂规律研究[J]. 岩土工程学报, 2015, 37(4): 727-733. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504023.htm

    XI Jing-yi, CHEN Zhong-hui, ZHU Di-jie, et al. Stress intensity factors and initiation of unequal collinear cracks in rock[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 727-733. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504023.htm

    [13] 中国航空研究院. 应力强度因子手册(修订版)[M]. 北京: 科学出版社, 1996: 38-39.

    Chinese Aeronautical Establishment. Handbook of Stress Intensity Factors (Revised Edition)[M]. Beijing: SciencePress, 1996: 38-39. (in Chinese)

    [14] 宋彦琦, 李名, 王晓, 等. 基于高速摄影的双预制裂纹大理岩加卸载试验[J]. 岩石力学与工程学报, 2015, 34(增刊1): 2679-2689. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1012.htm

    SONG Yan-qi, LI Ming, WANG Xiao, et al. Experimental test on marble containing two pre-existing cracks under loading and unloading conditions based on high-speed photography[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2679-2689. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1012.htm

    [15] 范天佑. 断裂理论基础[M]. 北京: 科学出版社, 2003: 73-100.

    FAN Tian-you. Theoretical Basis of Fracture[M]. Beijing: Science Press, 2003: 73-100. (in Chinese)

  • 期刊类型引用(10)

    1. 陆晶晶,李康. 柔性沥青路面病害成因分析及修复措施研究. 建筑机械. 2025(01): 16-21 . 百度学术
    2. 路继红,李丽胜,张沛林. 河西盐渍土地区路面拱胀特征与防治技术措施. 价值工程. 2025(16): 134-136 . 百度学术
    3. 林宇坤,宋玲,刘杰,闫晓亮,朱世煜. 荒漠区沥青路面拱胀病害机理及影响因素分析. 公路交通科技. 2024(04): 31-41 . 百度学术
    4. 张辉,王志杰. 硫酸盐侵蚀作用对ATB力学性能的影响. 安徽建筑. 2024(07): 84-87 . 百度学术
    5. 陆晶晶,刘德功. 尼日利亚某A级公路柔性沥青路面病害分析与路面结构设计. 建筑机械. 2024(11): 10-15 . 百度学术
    6. 张梦媛,丁龙亭,王选仓,谢金生,王孜健. 基于Comsol Multiphysics的半浸泡非饱和水泥基材料水分输运数值模型研究. 重庆大学学报. 2024(12): 45-56 . 百度学术
    7. 张留俊,裘友强,张发如,李雄飞,刘军勇. 降水入渗条件下氯盐渍土水盐迁移规律. 交通运输工程学报. 2023(04): 116-127 . 百度学术
    8. 李品良,许强,刘佳良,何攀,纪续,陈婉琳,彭大雷. 盐分影响重塑黄土渗透性的微观机制试验研究. 岩土力学. 2023(S1): 504-512 . 百度学术
    9. 吴军. 掺入玄武岩纤维的道桥沥青路面复合材料试验分析. 建筑科技. 2023(06): 108-110 . 百度学术
    10. 屈磊,许健,陈忠燕,刘永昊. 新疆盐渍土地区公路纵向开裂机制探讨. 市政技术. 2022(10): 40-44 . 百度学术

    其他类型引用(7)

图(18)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 17
出版历程
  • 收稿日期:  2019-05-23
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-03-31

目录

    /

    返回文章
    返回