• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

黄土自重湿陷变形的多地层离心模型试验方法

米文静, 张爱军, 刘争宏, 刘宏泰

米文静, 张爱军, 刘争宏, 刘宏泰. 黄土自重湿陷变形的多地层离心模型试验方法[J]. 岩土工程学报, 2020, 42(4): 678-687. DOI: 10.11779/CJGE202004010
引用本文: 米文静, 张爱军, 刘争宏, 刘宏泰. 黄土自重湿陷变形的多地层离心模型试验方法[J]. 岩土工程学报, 2020, 42(4): 678-687. DOI: 10.11779/CJGE202004010
MI Wen-jing, ZHANG Ai-jun, LIU Zhen-hong, LIU Hong-tai. Multi-stratigraphic centrifugal model test method for determination of self-weight collapsible deformation of loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 678-687. DOI: 10.11779/CJGE202004010
Citation: MI Wen-jing, ZHANG Ai-jun, LIU Zhen-hong, LIU Hong-tai. Multi-stratigraphic centrifugal model test method for determination of self-weight collapsible deformation of loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 678-687. DOI: 10.11779/CJGE202004010

黄土自重湿陷变形的多地层离心模型试验方法  English Version

基金项目: 

国家重点研发计划项目 2017YFC0405103

陕西省重点研发计划项目 2017ZDXM-SF-074

国家自然科学基金项目 51978572

陕西省水利科技计划项目 2013slkj-10

详细信息
    作者简介:

    米文静(1985—),女,博士研究生,主要从事湿陷性黄土研究。E-mail: miwenjing@nwsuaf.edu.cn

    通讯作者:

    张爱军, E-mail: zaj@nwsuaf.edu.cn

  • 中图分类号: TU444

Multi-stratigraphic centrifugal model test method for determination of self-weight collapsible deformation of loess

  • 摘要: 黄土的自重湿陷变形对上部建筑物具有较大的危害,现有的黄土室内湿陷试验方法和现场浸水试验方法,难以同时满足工程建设对试验结果在经济性、期限和准确性方面的要求。在之前提出的黄土湿陷变形的典型层离心模型试验方法的基础上,以咸阳渭城区布里村自重湿陷性黄土地基为对象,开展了包含地基多个地层的单线法和双线法自重湿陷变形离心模型试验,提出了黄土自重湿陷变形的多地层离心模型试验方法,并与室内湿陷试验和现场浸水试验结果进行了对比;同时分析了Q2和Q3黄土自重湿陷的分层变形特征。研究结果表明:多地层离心模型试验结果得到的地区修正系数值与现场浸水试验测得的值相差0.04,其相对误差为2.5%。证明多地层离心模型试验方法可以得到与现场浸水试验相近的结果,且具有费用少、试验周期短的优势,在一定情况下可以取代现场浸水试验进行黄土自重湿陷变形的测定。
    Abstract: The self-weight collapsible deformation of loess is harmful to the upper buildings. The existing indoor collapsibility and on-site water immersion test method for loess are difficult to satisfy the requirements of the project construction in terms of the economy, duration and accuracy of the test results. Based on the typical-stratigraphic centrifugal model test method, with the self-weight collapsible loess foundation of Buli Village, Weicheng District, Xianyang City as the object, a multi-stratigraphic centrifugal model test method for determination of loess self-weight collapsible deformation is proposed, and the results of the indoor collapsibility tests and on-site water immersion tests are compared. The stratified deformation characteristics of Q2 and Q3 loess self-weight collapsibility are also analyzed. The results show that the value of the regional correction coefficient obtained from the multi-stratigraphic centrifugal model test is different from that obtained from the on-site water immersion tests with a difference of 0.04, and the relative error is 2.5%. It is proved that the multi-stratigraphic centrifugal model test method can be used to obtain similar results with the on-site water immersion test, and has the advantages of low cost and short test cycle. Thus, under some circumstances, it can replace the on-site immersion tests to determine the self-weight collapsible deformation of loess.
  • 图  1   浸水试验平面布置图

    Figure  1.   Layout of soaking test plan

    图  2   离心模型试验机

    Figure  2.   50 g·t centrifuge

    图  3   饱和土样模型

    Figure  3.   Saturated model

    图  4   天然含水率土样模型

    Figure  4.   Model made of soil with natural moisture content

    图  5   天然含水率模型压缩变形情况

    Figure  5.   Compressive deformations of natural moisture content model

    图  6   天然含水率模型标志点压缩变形

    Figure  6.   Compressive deformations of markers for natural moisture content model

    图  7   沉降变形与离心加速度的关系

    Figure  7.   Displacement-centrifugal acceleration curves

    图  8   饱和模型各排标志点沉降变形

    Figure  8.   Displacements of markers for saturated model

    图  9   饱和模型各列标志点沉降变形

    Figure  9.   Displacements of markers for saturated model

    图  10   各排标志点湿陷变形

    Figure  10.   Collapsibile deformations of markers

    图  11   各列标志点湿陷变形

    Figure  11.   Collapsibile deformations of markers

    图  12   场地地基深度与总沉降变形关系

    Figure  12.   Relationship between total settlement and foundation

    表  1   土样的基本物理性质指标

    Table  1   Basic physical properties of loess

    土样埋深/m天然含水率/%干密度/(g·cm-3)天然孔隙比饱和度/%相对密度Gs土的分类
    1~1514.5~16.11.20~1.440.88~1.2633.11~47.322.71CL
    下载: 导出CSV

    表  2   黄土湿陷性试验结果

    Table  2   Indoor test results

    深度/m层厚/m土层类型含水率/%干密度/(g·cm-3)自重湿陷系数饱和密度/(g·cm-3)饱和自重压力/kPa自重湿陷量/mm
    11Q3新黄土14.51.300.0231.7417.42320.7
    21Q3新黄土14.71.230.0371.6934.36533.3
    31Q3新黄土15.51.250.0211.7151.44418.9
    41Q3新黄土15.71.260.0471.7168.59242.3
    51Q3新黄土15.41.380.0431.8086.56338.7
    61Q3新黄土15.61.200.0401.67103.30036.0
    71Q3新黄土15.41.270.0461.72120.51641.4
    81Q3新黄土16.01.280.0401.7334.50236.0
    91Q3新黄土16.11.360.0091.78121.1340.0
    101Q3新黄土15.41.300.0071.74138.5560.0
    111Q3古土壤15.21.440.0331.84156.94029.7
    121Q3古土壤15.41.440.0331.84175.32329.7
    131Q3古土壤15.61.410.0211.82193.50118.9
    141Q2老黄土15.61.410.0071.81211.6450.0
    151Q2老黄土15.81.420.0051.82229.8080.0
    Σ     自重湿陷量(mm) 345.6
    下载: 导出CSV

    表  3   离心模型试验中物理量的相似律

    Table  3   Scaling law of physical quantity in centrifuge model test

    符号名称量纲相似比
    g重力加速度LT-2N
    v速度LT-11
    s位移L1/N
    L几何尺寸L1/N
    w含水率11
    Sr饱和度11
    σ应力ML-1T-21
    ε应变11
    k渗透系数LT-1N
    注:表中L为长度量纲,T为时间量纲,M为质量量纲,N为模型率。
    下载: 导出CSV

    表  4   试验基本内容

    Table  4   Test design

    模型试样尺寸(长×宽×高)/(cm×cm×cm)初始离心加速度/g终级离心加速度/g离心加速度步长/g试验过程备注
    天然含水率模型20×20×300805离心加速度分级加至50g— 浸水至饱和—分级加至80g每级离心加速度待变形稳定后再加下一级;当离心加速度至50g时,运行较长时间。连续拍摄照片观察变形,稳定标准为连续多张照片位移无变化。
    饱和模型20×20×300805模型饱和,密封静置48 h—离心加速度分级加至80g
    注:模型率为50,在离心加速度为50g时浸水,离心加速度为50g,对应场地土层厚度为15 m,但为了保证数据的完整性,离心加速度最大到80g,离心加速度为80g时,对应场地土层厚度为24 m。
    下载: 导出CSV

    表  5   模型基本情况

    Table  5   Basic conditions of models

    模型土样层数模型土层类型模型层高/cm代表场地深度/m尺寸(长×宽×高)/(cm×cm×cm)初始含水率/%干密度/(g·cm-3)
    天然含水率模型第一层Q3新黄土20.800.00~10.4020×20×3015.41.27
    第二层Q3古土壤5.0010.40~12.9015.41.44
    第三层Q2老黄土4.2012.90~15.0015.61.41
    饱和模型第一层Q3新黄土20.800.00~10.4020×20×3015.41.27
    第二层Q3古土壤5.0010.40~12.9015.41.44
    第三层Q2老黄土4.2012.90~15.0015.61.41
    下载: 导出CSV

    表  6   各地层变形情况

    Table  6   Deformations of soil layers

    类别土层地层类型50g离心加速度时
    压缩量/mm沉降量/mm湿陷量/mm
    模型第一层Q3黄土0.946.495.55
    第二层Q3古土壤0.193.323.13
    第三层Q2黄土0.692.792.10
    Σ1.8212.6010.78
    原型场地第一层Q3黄土47.00324.50277.50
    第二层Q3古土壤9.50166.00156.50
    第三层Q2黄土34.50139.50105.00
    Σ91.00630.00539.00
    下载: 导出CSV
  • [1] 李涛, 蒋明镜, 张鹏. 非饱和结构性黄土侧限压缩和湿陷试验三维离散元分析[J]. 岩土工程学报, 2018, 40(增刊1): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1008.htm

    LI Tao, JIANG Ming-jing, ZHANG Peng. DEM analyses of oedometer and wetting tests on unsaturated structured loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 39-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1008.htm

    [2] 杨玉生, 李靖, 邢义川, 等. 压实黄土增湿变形性质及其影响因素试验研究[J]. 岩土工程学报, 2017, 39(4): 626-635. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201704008.htm

    YANG Yu-sheng, LI Jing, XING Yi-chuan, et al. Experimental study on moistening deformation characteristics of compacted loess and their influencing factors[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 626-635. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201704008.htm

    [3] 张爱军, 邢义川, 胡新丽, 等. 伊犁黄土强烈自重湿陷性的影响因素分析[J]. 岩土工程学报, 2016, 38(增刊2): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2019.htm

    ZHANG Ai-jun, XING Yi-chuan, HU Xin-li, et al. Influence factors of strong self-weight collapsibility of Ili loess[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 117-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2019.htm

    [4] 张爱军, 王毓国, 邢义川, 等. 伊犁黄土总吸力和基质吸力土水特征曲线拟合模型[J]. 岩土工程学报, 2019, 41(6): 1040-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906009.htm

    ZHANG Ai-jun, WANG Yu-guo, XING Yi-chuan, et al. SWCC fitting models of total and matrix suction for Ili loess[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1040-1049. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906009.htm

    [5] 张爱军, 邢义川, 汪海涛, 等. 基于增湿变形的渠道工程黄土渠基湿陷性评价方法[J]. 水利学报, 2017, 48(1): 41-51, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201701007.htm

    ZHANG Ai-jun, XING Yi-chuan, WANG Hai-tao, et al. Evaluation method for collapsibility of channel engineering with loess foundation based on moistening deformation[J]. Journal of Hydraulic Engineering, 2017, 48(1): 41-51, 60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201701007.htm

    [6] 杨生彬. 兰州某工程黄土湿陷性室内与现场试验对比分析[J]. 工程勘察, 2017(增刊2): 301-305. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZJKC201702001049.htm

    YANG Sheng-bing. Comparative study on laboratory test and field tests of collapsible loess in Lanzhou[J]. Geotechnical Investigation & Surveying, 2017(S2): 301-305. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZJKC201702001049.htm

    [7] 黄雪峰, 陈正汉, 哈双, 等. 大厚度自重湿陷性黄土场地湿陷变形特征的大型现场浸水试验研究[J]. 岩土工程学报, 2006(3): 382-389. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200603023.htm

    HUANG Xue-feng, CHEN Zheng-han, HA Shuang, et al. Large area field immersion tests on characteristics of deformation of self weight collapse loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2006(3): 382-389. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200603023.htm

    [8] 安鹏, 邢义川, 张爱军, 等. 基于离心模型试验的深厚湿陷性黄土自重湿陷性评价研究[J]. 四川大学学报(工程科学版), 2016, 48(6): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201606004.htm

    AN Peng, XING Yi-chuan, ZHANG Ai-jun, et al. Research on evaluation of self-weight collapsibility for large-thickness collapsible loess using centrifugal model test[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(6): 23-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201606004.htm

    [9] 邢义川, 金松丽, 赵卫全, 等. 基于离心模型试验的黄土湿陷试验新方法研究[J]. 岩土工程学报, 2017, 39(3): 389-398. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703002.htm

    XING Yi-chuan, JIN Song-li, ZHAO Wei-quan, et al. New experimental method for loess collapsibility using centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 389-398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703002.htm

    [10] 张建红, 孙国亮, 鲁晓兵. 离心机中动冰荷载的模拟[J]. 岩土工程学报, 2005(4): 474-477. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC20050400L.htm

    ZHANG Jian-hong, SUN Guo-liang, LU Xiao-bing. Centrifuge modeling of copper ion migration in unsaturated silty clay[J]. Chinese Journal of Geotechnical Engineering, 2005(4): 474-477. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC20050400L.htm

    [11] 侯瑜京, 彭仁, 张雪东, 等. 垃圾土边坡失稳离心模拟试验研究[J]. 中国水利水电科学研究院学报, 2017, 15(4): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201704001.htm

    HOU Yu-jing, PENG Ren, ZHANG Xue-dong, et al. Centrifuge modeling of municipal solid waste slope failure[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15(4): 241-249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201704001.htm

    [12] 贾杰, 裴向军, 谢睿, 等. 延安市阳崖黄土边坡开挖破坏离心模拟试验研究[J]. 工程地质学报, 2016, 24(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201601001.htm

    JIA Jie, PEI Xiang-jun, XIE Rui, et al. Centrifugal simulation experiment for a loess cutting slope at Yangya, Yanan city, China[J]. Journal of Engineering Geology, 2016, 24(1): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201601001.htm

    [13] 杜延龄, 韩边兵. 土工离心模型试验技术[M]. 北京: 中国水利水电出版社, 2010.

    DU Yan-ling, HAN Lian-bing. Geotechnical Centrifuge Model Test Technology[M]. Beijing: China Water and Power Press, 2010. (in Chinese)

  • 期刊类型引用(6)

    1. 王立业,周凤玺,牟占霖,万旭升,吴道勇. 超固结饱和盐渍黏土化学–力学耦合模型及其验证. 岩石力学与工程学报. 2024(09): 2301-2313 . 百度学术
    2. 张斯妤,闫子壮,陈云敏,李育超. 盐溶液侵蚀下砂-膨润土混合土化学固结行为研究. 地基处理. 2022(03): 181-189 . 百度学术
    3. 吴谦,毛雪松,王常明. 结合水对软土次固结特性的影响机制研究. 中国公路学报. 2021(07): 215-225 . 百度学术
    4. 胡士骏,陈盼,韦昌富,伊盼盼,王勇. NaCl溶液作用下深海沉积物基本物理力学响应. 岩土工程学报. 2021(S2): 142-145 . 本站查看
    5. Yu Zhang,Jie Liu,AnHua Xu,JianKun Liu,ZhaoHui Yang,JianHong Fang. Impact of brine on physical properties of saline soils. Sciences in Cold and Arid Regions. 2021(05): 430-439 . 必应学术
    6. 宋朝阳,赵成刚,韦昌富,马田田. 非饱和土平均粒间应力的计算及应用. 岩土力学. 2020(08): 2665-2674 . 百度学术

    其他类型引用(8)

图(12)  /  表(6)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  24
  • PDF下载量:  140
  • 被引次数: 14
出版历程
  • 收稿日期:  2019-05-23
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-03-31

目录

    /

    返回文章
    返回