Determination of nonlinear permeability parameters for shear zones in Baihetan Hydropower Station by in-situ tests
-
摘要: 基于广义非线性渗透的Forchheimer方程,提出了一种确定错动带非线性流渗透参数的原位试验方法。结合白鹤滩水电工程现场试验研究发现,非线性系数b、m的取值与稳定性和错动带的充填物类型、结构有关。C3、C4层间错动带m=2,非线性系数b值相对较为稳定,变化不大。C2层间错动带m=0.5,非线性系数b值相对稳定,但量级上远小于C3、C4层间错动带非线性系数b值;分析其原因认为高压压水试验过程中原来错动带连通性较差的孔隙,在高压水作用下形成了贯通的优势流通道,导致相同压力下的压水量大幅增加。依据试验获得非线性系数和非线性程度影响系数β判别,高压压水试验过程中压水孔和测试孔之间非线性项占绝对优势,地下水的运动状态均为非线性流,说明原位测试方法选择的压水孔和测试孔之间的距离、压力梯级变化是合适的。试验验证表明,错动带非线性渗透参数的原位试验方法不仅理论严密,而且具有试验过程简单、易操作,获取的参数齐全、精度高等优点,因此有很好的推广应用价值。Abstract: Based on the Forchheimer equation of generalized nonlinear permeability, an in-situ test method for determining the permeability parameters of nonlinear flow in shear zones is proposed. Based on the field tests of Baihetan Hydropower Station, it is found that the values and stability of nonlinear coefficient b and m are related to the filling type and structure of the shear zone. In interlaminar shear zones of C3 and C4, m=2, and the value of nonlinear coefficient b is relatively stable with little change. In interlaminar shear zone of C2, m=0.5, the value of nonlinear coefficient b is relatively stable, but the order of magnitude is much smaller than that of interlaminar shear zones of C3 and C4. The reason is that the original pore with poor connectivity of shear zone forms a dominant flow channel under the action of high-pressure water, resulting in significant increase of water volume under the same pressure. Using the nonlinear coefficients obtained from experiments into Forchheimer equation for curves and judged by calculation of influence coefficient β of nonlinearity degree, the nonlinear terms between pressure holes and test holes are absolutely dominant in the process of high-pressure water tests. The movement state of groundwater is nonlinear flow. It is shown that the distance between pressure holes and test holes and the pressure gradient change selected by the in-situ test method are suitable. The test results show that the in-situ test method of nonlinear permeability parameters of shear zones is rigorous in theory and has the advantages of simple test process, easy operation, complete parameters and high accuracy, so it has good application value.
-
Keywords:
- nonlinear flow /
- permeability parameters /
- Baihetan Hydropower Station /
- in-situ test /
- shear zone
-
0. 引言
分布式光纤传感技术以其全分布测量、敏感性好、测量距离长、抗干扰能力强及埋设植入方便等优势成为一种新型热点大规模岩土体变形安全监测方法,在隧道[1-3]、大坝[4-6]、边坡[7-8]与地面沉降[9-10]变形监测等领域被国内外研究者广泛应用。光纤作为数据信号传输介质,纤芯上每一点又可作为传感器,在无需另外布设测量元器件的情况下,即可实现实时受力变形和温度变化监测。
在岩土体变形监测领域,常用的分布式光纤传感监测技术主要有[11]光时域反射技术(OTDR)、布里渊光时域反射技术(BOTDR)、布里渊光时域分析技术(BOTDA)、布里渊光频域分析技术(BOFDA)和分布式声学感测技术(DAS)等。BOTDA基本原理可表述为光纤轴向应变或温度变化与相应入射光与背向布里渊散射光频移量的线性关系,研究表明当环境温度变化小于5℃时,可剔除温度对监测结果的影响。
分布式光纤传感技术在岩土体变形监测领域的优势突出,但基于可靠试验验证基础提出可推广应用于岩土工程实践的分布式光纤监测技术仍缺乏,为充分发挥分布式传感光纤测量技术特点,基于特殊设计的光纤变形试验装置,提出了一种基于分布式光纤传感技术二维变形监测方法,开展了5类水平位移与沉降调节工况的传感光纤室内二维变形试验与2组堆石坝工程内部变形实测数据的模拟验证。
1. 分布式光纤二维变形监测试验
1.1 试验仪器和光纤选择
二维变形监测试验选用的应变传感光纤为无金属铠装的乙丙橡胶(EPR)外护套V1传感光纤,直径2.8 mm,应变测量量程可达1%(即为10000 με)。
试验测试采用瑞士OMNISENS公司生产的VISION Dual分布式光纤应变测量系统,其应变测量最小空间分辨率0.1 m,准确度为±10 με,应变测量范围-20000~20000 με。
本次试验采用BOTDA测量模式,数据采样间距设为0.25 m,中心频率测量系统自动识别配置为10.642 GHz,测量系统的起始频率和终止频率为10.392~10.892 GHz,频率间隔为0.001 GHz。
1.2 试验装置布设
根据试验设计方案,为形成直线AB段与倾斜线CD段测量回路需在光纤适当位置布设4个定位卡槽,左侧位移平台固定,试验过程通过左/右、上/下移动右侧位移平台使光纤产生二维变形。基于分布式光纤传感的二维变形试验装置示意图如图 1所示。
通过百分表读取位移平台(传感光纤)水平与沉降数据,为数据处理方便,本次试验以位移平台向下/向右移动为正,以向上/向左移动为负。为保证光纤紧绷及数据有效性,试验监测平台光纤布设完成后需要进行预拉,位移平台向右侧移动6 mm使测量回路产生初始张拉变形,设定为初始(0,0)位置,水平位移与沉降监测百分表数据清零。定位卡槽直线段光纤长度L为3.254 m,倾斜线段高差H为0.400 m。
1.3 试验操作步骤
采集6组初始(0, 0)点位频率数据取均值作为试验初始基准值,记为试验编号1。试验设计按5个工况进行测试,百分表数据稳定后采集数据。工况1,第一阶段为向右移动,试验编号1~9;工况2,第二阶段为向下移动,试验编号9~21;工况3,第三阶段为向左/向上移动试验编号21~27;工况4,第四阶段为向右/向上移动试验编号27~35;工况5,第五阶段为向左/向下移动,试验编号35~40。其中工况2~工况5,均以前述工况的终值作为初始值。试验操作移动距离与测试位置统计结果如表 1所示。
表 1 试验操作调节距离与测试位置统计表Table 1. Statistical table of test operation distances and test positions(单位: mm) 编号 调节距离 测试点位 编号 调节距离 测试点位 1 — (0, 0) 21 — (8, 30) 2 右1 (1, 0) 22 左-2上-5 (6, 25) 3 右1 (2, 0) 23 左-1.2上-5 (4.8, 20) 4 右1 (3, 0) 24 左-1.2上-5 (3.6, 15) 5 右1 (4, 0) 25 左-1.2上-5 (2.4, 10) 6 右1 (5, 0) 26 左-1.2上-5 (1.2, 5) 7 右1 (6, 0) 27 左-1.2上-5 (0, 0) 8 右1 (7, 0) 27 — (0, 0) 9 右1 (8, 0) 28 右1上-5 (1, -5) 9 — (8, 0) 29 右1上-5 (2, -10) 10 下2 (8, 2) 30 右1上0 (3, -10) 11 下2 (8, 4) 31 右1上-5 (4, -15) 12 下2 (8, 6) 32 右1上-5 (5, -20) 13 下2 (8, 8) 33 右1上-5 (6, -25) 14 下2 (8, 10) 34 右1上-5 (7, -30) 15 下3 (8, 13) 35 右1上-5 (8, -35) 16 下3 (8, 16) 35 — (8, -35) 17 下4 (8, 20) 36 左-1下5 (7, -30) 18 下5 (8, 25) 37 左-1下5 (6, -25) 19 下5 (8, 30) 38 左-2下5 (4, -20) 20 下10 (8, 40) 39 左-2下10 (2, -10) 21 上-10 (8, 30) 40 左-2下10 (0, 0) 注:本次试验以向下移动为正,向右移动为正;以向下移动为负,向左移动为负。 2. 试验结果分析
2.1 分布式光纤应变曲线
VISION Dual分布式光纤应变测量系统各采样点实测数据为频率值,本次试验数据采样间距设为0.25 m,即1 m传感光纤上有4个采样点。因室内试验环境温度恒定,可剔除温度对测试结果的影响,传感光纤频移量与应变之间的关系为
ε = kνε。 (1) 式中:ε为某采样点监测到的光纤应变(με),以拉应变为正,压应变为负;k为应变系数(με/GHz);νε为某采样点光纤形变引起的频移量(GHz)。
由实测采样点频率值,通过传感光纤频移量与应变之间的关系式(1),计算得到光纤应变量。以第一试验阶段为例,以第1组试验数据为初值进行计算,BOTDA测量光纤应变曲线如图 2所示。工况1:试验第一阶段为向右移动拉伸光纤,右侧定位点竖向位置不变,直线AB段和倾斜线CD段产生拉应变,由图 2可以看出光纤应变随张拉位移等比例增大,两线段应变增大幅度基本一致。其他工况应变分析同上述所述,不再一一详述。
分布式传感光纤进行二维变形监测时,因分布式传感光纤是柔性物体,而定位卡槽硬度较大,除夹具附近点位传感光纤因与定位卡槽接触而弯曲受力产生一定的应力集中造成应变过大外,变形区域(即两定位卡槽之间)范围的其他采样点应变分布均匀,沿长度方向应变曲线较为平直。变形区间外光纤基本无微应变,说明分布式传感光纤进行变形监测能有效阻止应变向定点区域外扩散,因此本技术方法可以准确定位变形事件发生点。
2.2 水平位移与沉降误差分析
图 2表明试验过程中水平/倾斜两条光纤应变测值在各自的两端固定点内一致性良好,根据测得两条光纤应变平均值可通过下式计算得水平/垂直移动后两条光纤新的长度,
l′=(1+¯ε)⋅l。 (2) 式中:¯ε为水平/倾斜布置光纤各自平均应变值(με)。
由此得水平向固定光纤新长度l′1和倾斜向固定光纤新长度l′2,在此基础上基于三角函数转换即可求得试验装置的水平位移和垂直位移值。
百分表实测水平/沉降位移值与通过光纤应变计算得到的位移值之差,定义为绝对误差。误差的绝对值越小,说明光纤测变形的适用性越强,实际工程应用时变形数据监测结果越准确。百分表实测位移即试验装置传感光纤水平与沉降实际位移量,基于工程应用需连续监测的实际情况,综合了测试全过程的40组试验数据,并采用5类差值计算方法得到绝对误差统计分析结果如图 3所示。
由图 3相对误差数据可以看出各测试点位(试验编号)水平位移绝对误差正负最大波动量值为1 mm,因定位卡槽直线段光纤长度L为3254 mm,则波动值仅占光纤长度的0.0028%,数值可忽略不计;沉降绝对误差在正负最大波动量值为2 mm,因倾斜线段高差H为400 m,则波动值仅占高差的0.5%,沉降方向的波动误差亦极小。
上述试验结果表明,基于分布式传感光纤进行监测,测试区域范围内应变分布均匀,有效防止了应变向不变形区域扩散,同时水平位移和沉降测量误差较小,变形监测性能优越,可以很好的满足岩土体变形监测要求。
3. 基于工程实测数据的模拟试验
依托江苏某抽水蓄能电站上库面板堆石坝内部变形安全监测工程[4],堆石坝最大坝高182 m,基于本文提出的技术方法以0+330 m断面EL178.1 m高程内部变形实测沉降量和水平位移为依据开展模拟试验,分别开展了小变形和大变形两种工况的模拟试验。其中,2021年2月19日大坝EL178.1 m高程上部堆石体填筑厚度为10 m左右,此时实测0+330 m断面EL178.1 m高程坝体最大沉降约120 mm,作为小变形工况;2022年9月21日上覆土厚度约90 m,测得坝体最大沉降1000 mm左右,作为大变形工况。堆石坝内部变形测量断面总长度为406 m(0+178 m—0-228 m),根据堆石坝工程实测水平位移和沉降,以测点间距为3.3 m的相邻测点差值作为室内试验平台左/右、上/下调节距离开展模拟试验,得到了小变形和大变形工况下水平位移、沉降的原型监测数据与室内模拟试验结果的对比分析曲线如图 4所示。
由图 4可以看出堆石坝内部实测水平位移、沉降数据与室内模拟试验结果的曲线形式及量值吻合度均较高。其中,小变形工况各测点沉降误差最大为3 mm,水平位移最大误差-2 mm,误差量值均为mm级。大变形工况各测点沉降误差最大至-24 mm,水平位移最大误差6 mm,沉降误差量值为cm级,水平位移误差量值仍为mm级。模拟试验研究表明,基于分布式传感光纤技术的二维变形监测方法对200级高土石坝的坝体内部变形监测具有良好监测精度,可满足工程实际需要。
4. 结论
(1)基于分布式传感光纤技术的二维变形监测方法,变形区间内采样点应变分布均匀,沿光纤长度方向应变曲线较为平直。变形区间外光纤基本无微应变,提出的监测方法有效阻止了应变向测试区域外扩散,提高了变形事件发生点的定位精度和准确度。
(2)5类试验工况下室内试验测得水平位移和沉降值的绝对误差较小,40组试验测得水平位移绝对误差正负最大波动量值为1 mm,沉降绝对误差在正负最大波动量值为2 mm,绝对误差平均值极小,本监测方法的二维变形监测性能优越。
(3)基于堆石坝实测水平位移、沉降数据的模拟试验结果的曲线形式及量值吻合度均较高,406 m长的测量断面以测点间距为3.3 m的准分布式测点沉降测量误差为cm级,水平位移测点测量误差mm级。
(4)基于分布式传感光纤技术的二维变形监测方法对200级高土石坝的坝体内部变形监测具有良好监测精度,可满足高土石坝坝体内部变形监测工程实际需要,该技术方法也可以推广应用至混凝土面板堆石坝的面板挠度监测等领域。
-
表 1 CZK51-3孔非线性系数b计算结果(m=0.5)
Table 1 Calculated results of nonlinear coefficient b of borehole CZK51-3(m=0.5)
试验孔CZK51-3 观测孔非线性系数b/(s2·cm-2) 压力/MPa Q/(cm3·s-1) CZK51-1 CZK51-2 CZK51-0 CZK51-4 0.3 1.50 8.18×102 8.57×102 1.04×102 5.42×102 0.5 22.83 4.30×102 3.65×102 4.44×102 2.31×102 0.7 133.33 2.67×102 2.11×102 2.56×102 1.33×102 1.0 190.00 3.26×102 2.52×102 3.06×102 1.59×102 备注 稳定值 r=447 cm r=500 cm r=400 cm r=1000 cm M=67.5 cm M=32.5 cm M=37.5 cm M=27.5 cm 表 2 CZK88-0孔非线性系数b计算结果(m=2)
Table 2 Calculated results of nonlinear coefficient b of borehole CZK88-0(m=2)
试验孔CZK88-0 观测孔非线性系数b/(s2·cm-2) 压力/MPa Q/(cm3·s-1) CZK88-1 CZK88-2 CZK88-3 CZK88-4 0.3 0.59 7.03×108 1.57×109 5.89×108 2.03×109 0.5 1.14 5.66×108 7.13×108 5.32×108 9.25×108 0.7 0.86 1.64×109 1.73×109 1.57×109 2.25×109 1.0 0.71 3.84×109 3.64×109 3.73×109 4.73×109 1.5 1.25 2.00×109 1.75×109 1.95×109 2.27×109 2.0 4.48 2.17×108 1.83×108 2.13×108 2.38×108 2.5 5.38 1.92×108 1.59×108 1.89×108 2.06×108 3.0 7.50 1.20×108 9.79×107 1.18×108 1.27×108 备注 稳定值 r=200 cm r=300 cm r=400 cm r=600 cm M=40.0 cm M=35.0 cm M=40.0 cm M=40.0 cm 表 3 CZK68-2孔非线性系数b计算结果(m=2)
Table 3 Calculated results of nonlinear coefficient b of borehole CZK68-2(m=2)
试验孔CZK68-2 观测孔非线性系数b/(s2·cm-2) 压力/MPa Q/(cm3·s-1) CZK68-1 CZK68-3 CZK68-4 0.3 1.18 4.78×108 4.08×108 5.29×108 0.5 0.78 1.80×109 1.53×109 1.99×109 0.7 0.93 1.76×109 1.50×109 1.95×109 1.0 1.37 1.16×109 9.88×108 1.28×109 1.5 5.52 1.06×108 9.02×107 1.17×108 备注 稳定值 r=100 cm r=200 cm r=300 cm M=37.5 cm M=35.0 cm M=40.0 cm 表 4 不同错动带非线性参数汇总表
Table 4 Summary of nonlinear parameters of different shear zones
错动带编号 C2 C3 C4 a/(s·cm-1) 15.31 471.70 5.32 b/(s2·cm-2) 3.49×102 7.00×108 6.80×108 表 5 非线性程度影响系数β计算结果
Table 5 Calculated results of nonlinear degree coefficient β
错动带编号 试验孔 β 最小值 最大值 C2 CZK51-3 97.68% 99.99% C3 CZK68-2 93.91% 99.99% C4 CZK88-0 99.83% 100.00% -
[1] 刘健, 朱赵辉, 蔡浩, 等. 超大型地下洞室拱圈围岩变形、破坏特性研究[J]. 岩土工程学报, 2018, 40(7): 1257-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807015.htm LIU Jian, ZHU Zhao-hui, CAI Hao, et al. Deformation and failure characteristics of top arch surrounding rock of super large underground caverns[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1257-1267. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807015.htm
[2] 赵恺, 王环玲, 徐卫亚, 等. 贯通充填裂隙类岩石渗流特性试验研究[J]. 岩土工程学报, 2017, 39(6): 1130-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706025.htm ZHAO Kai, WANG Huan-ling, XU Wei-ya, et al. Experimental study on seepage characteristics of rock-like materials with consecutive and filling fractures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1130-1136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706025.htm
[3] BASAK P, MADHAV M R. Analytical solutions to the problems of transient drainage through trapezoidal embankments with Darcian and non-Darcian flow[J]. Journal of Hydrology, 1979, 41: 49-57. doi: 10.1016/0022-1694(79)90104-5
[4] CHEN C, WAN J, ZHAN H. Theoretical and experimental studies of coupled seepage pipe flow to a horizontal well[J]. Journal of Hydrology, 2003, 281: 159-171. doi: 10.1016/S0022-1694(03)00207-5
[5] KOHL T, EVANS K F, HOPKIRK R J, et al. Observation and simulation of non-Darcian flow transients in fractured rock[J]. Water Resources Research, 1997, 33(3): 407-418. doi: 10.1029/96WR03495
[6] QIAN J, ZHAN H, ZHAO W, et al. Experimental study of turbulent unconfined groundwater flow in a single fracture[J]. Journal of Hydrology, 2005, 311: 134-142. doi: 10.1016/j.jhydrol.2005.01.013
[7] QIAN J, ZHAN H, ZHAO W, et al. Experimental evidence of scale-dependent hydraulic conductivity for fully developed turbulent flow in a single fracture[J]. Journal of Hydrology, 2007, 339: 206-215. doi: 10.1016/j.jhydrol.2007.03.015
[8] 邓英尔, 谢和平, 黄润秋, 等. 饱和黏土非线性渗流规律与径向固结[J]. 应用数学和力学, 2007, 28(11): 1272-1280. DENG Ying-er, XIE He-ping, HUANG Run-qiu, et al. Law of nonlinear flow in saturated clays and radial consolidation[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1272-1280. (in Chinese)
[9] SEN Z. Non-Darcian flow in fractured rocks with a linear flow pattern[J]. Journal of Hydrology, 1987, 92: 43-57. doi: 10.1016/0022-1694(87)90088-6
[10] SEN Z. Type curves for two-region well flow[J]. Journal of Hydrology Engineering, ASCE, 1988, 114(12): 1461-1484. doi: 10.1061/(ASCE)0733-9429(1988)114:12(1461)
[11] SEN Z. Analytical solution incorporating nonlinear radial flow in confined aquifers[J]. Water Resources Research, 1988, 24(4): 601-606. doi: 10.1029/WR024i004p00601
[12] SEN Z. Nonlinear flow toward wells[J]. Journal of Hydrology Engineering, ASCE, 1989, 115(2): 193-209. doi: 10.1061/(ASCE)0733-9429(1989)115:2(193)
[13] SEN Z. Nonlinear radial flow in confined aquifers toward large-diameter wells[J]. Water Resources Research, 1990, 26(5): 1103-1109.
[14] WEN Z, HUANG G, ZHAN H. Non-Darcian flow in a single confined vertical fracture toward a well[J]. Journal of Hydrology, 2006, 330: 698-708. doi: 10.1016/j.jhydrol.2006.05.001
[15] WEN Z, HUANG G, ZHAN H. Non-Darcian flow toward a Finite-Diameter vertical well in a confined aquifer[J]. Pedosphere, 2008, 18(3): 288-303. doi: 10.1016/S1002-0160(08)60019-3
[16] WEN Z, HUANG G, ZHAN H. Non-Darcian flow to a well in a leaky aquifer using the Forchheimer equation[J]. Hydrogeology Journal, 2011, 19: 563-572. doi: 10.1007/s10040-011-0709-2
[17] WEN Z, LIU K, ZHAN H. Non-Darcian flow toward a larger-diameter partially penetrating well in a confined aquifer[J]. Environmental Earth Sciences, 2014, 72: 4617-4625. doi: 10.1007/s12665-014-3359-6
[18] WEN Z, HUANG G, ZHAN H. A numerical solution for Non-Darcian flow to a well in a confined aquifer using the power law function[J]. Journal of Hydrology, 2009, 364: 99-106. doi: 10.1016/j.jhydrol.2008.10.009
[19] CAMACHO V R G, SQUEZ C M. Comment on “Analytical solution incorporating nonlinear radial flow in confined aquifers” by Zekâi Sen[J]. Water Resources Research, 1992, 28(12): 3337-3338. doi: 10.1029/92WR01646
[20] WEN Z, HUANG G, ZHAN H. Non-Darcian flow to a well in an aquifer-aquitard system[J]. Advances in Water Resources, 2008, 31: 1754-1763. doi: 10.1016/j.advwatres.2008.09.002
[21] WEN Z, HUANG G, ZHAN H. Solutions for Non-Darcian flow to an extended well in fractured rock[J]. Ground Water, 2011, 49: 280-285. doi: 10.1111/j.1745-6584.2010.00728.x
[22] MATHIAS S A, BUTLER A P, JACKSON B M, et al. Transient simulations of flow and transport in the Chalk unsaturated zone[J]. Journal of Hydrology, 2006, 330(1): 10-28.
[23] CHOI E S, CHEEMA T, ISLAM M R. A new dual-porosity/dual-permeability model with non-Darcian flow through fractures[J]. Journal of Petroleum Science & Engineering, 1997, 17(3/4): 331-344.
[24] WU Y S. An approximate analytical solution for non-Darcy flow toward a well in fractured media[J]. Water Resources Research, 2002, 38(3): 47-53.
[25] WU Y S. Numerical simulation of single-phase and multiphase non-darcy flow in porous and fractured reservoirs[J]. Transport in Porous Media, 2002, 49(2): 209-240. doi: 10.1023/A:1016018020180
[26] EWING R E, LIN Y. A mathematical analysis for numerical well models for non-Darcy flows[J]. Applied Numerical Mathematics, 2001, 39(1): 17-30. doi: 10.1016/S0168-9274(01)00042-3
[27] EWING R E, LAZAROV R D, LYONS S L, et al. Numerical well model for non-Darcy flow through isotropic porous media[J]. Computational Geosciences, 1999, 3(3/4): 185-204. doi: 10.1023/A:1011543412675
[28] KOLDITZ O. Non-linear flow in fractured rock[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2001, 11(6): 547-575.
[29] 周志芳, 王仲夏, 曾新翔. 岩土体渗透性参数现场快速测试系统开发[J]. 岩石力学与工程学报, 2008, 27(6): 1292-1296. doi: 10.3321/j.issn:1000-6915.2008.06.026 ZHOU Zhi-fang, WANG Zhong-xia, ZENG Xin-xiang. Development of rapid field test system for determining permeable of rock and soil masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1292-1296. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.06.026
[30] 周志芳, 庄超, 戴云峰, 等. 单孔振荡式微水试验确定裂隙岩体各向异性渗透参数[J]. 岩石力学与工程学报, 2015, 34(2): 271-278. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502008.htm ZHOU Zhi-fang, ZHUANG Chao, DAI Yun-feng, et al. Determining anisotropic hydraulic conductivity in fractured rocks based on single-borehole slug tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 271-278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502008.htm
[31] ZHOU Z, ZHAO Y, WANG J, et al. A Novel Apparatus for obtaining in situ estimates of anisotropism hydraulic conductivity in fractured rocks[J]. Geotechnical Testing Journal, 2016, 39(4): 525-531.
[32] 胡少华, 周佳庆, 陈益峰, 等. 岩石粗糙裂隙非线性渗流特性试验研究[J]. 地下空间与工程学报, 2017, 13(1): 48-56. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701008.htm HU Shao-hua, ZHOU Jia-qing, CHEN Yi-feng, et al. Laboratory research on nonlinear flow behavior of rough fractures[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(1): 48-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701008.htm
[33] 李文亮, 周佳庆, 贺香兰, 等. 不同围压下破碎花岗岩非线性渗流特性试验研究[J]. 岩土力学, 2017, 38(增刊1): 140-150. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1019.htm LI Wen-liang, ZHOU Jia-qing, HE Xiang-lan, et al. Nonlinear flow characteristics of broken granite subject to confining pressures[J]. Rock and Soil Mechanics, 2017, 38(S1): 140-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1019.htm
[34] ZIMMERMAN R W, AL-YAARUBI A, PAIN C C, et al. Nonlinear regimes of fluid flow in rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3): 163-169.