• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于XFEM的土体水力劈裂模拟

王翔南, 李全明, 于玉贞, 吕禾

王翔南, 李全明, 于玉贞, 吕禾. 基于XFEM的土体水力劈裂模拟[J]. 岩土工程学报, 2020, 42(2): 390-397. DOI: 10.11779/CJGE202002021
引用本文: 王翔南, 李全明, 于玉贞, 吕禾. 基于XFEM的土体水力劈裂模拟[J]. 岩土工程学报, 2020, 42(2): 390-397. DOI: 10.11779/CJGE202002021
WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, LÜ He. Hydraulic fracturing simulation of soils based on XFEM[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 390-397. DOI: 10.11779/CJGE202002021
Citation: WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, LÜ He. Hydraulic fracturing simulation of soils based on XFEM[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 390-397. DOI: 10.11779/CJGE202002021

基于XFEM的土体水力劈裂模拟  English Version

基金项目: 

国家重点研发计划项目 2017YFC0804602

国家自然科学基金项目 51979143

详细信息
    作者简介:

    王翔南(1989— ),男,博士,主要从事岩土工程高性能数值计算等方面的研究工作。E-mail:13684060651@163.com

  • 中图分类号: TU47

Hydraulic fracturing simulation of soils based on XFEM

  • 摘要: 水力劈裂会对心墙堆石坝的安全造成严重的负面影响。宏观上,土体水力劈裂可看作是土体在水力楔劈作用下使局部裂缝(薄弱面)进一步发展的破坏过程。XFEM是一种可以有效描述裂缝的数值模拟方法。采用XFEM结合Biot固结理论,并对裂缝单元进行处理,从而以弥散式的裂缝状态和嵌入式的裂缝形态共同描述了土体的水力劈裂过程,并以一个模型算例和挪威Hyttejuvet坝的实际工程算例对方法进行了验证。该工作的成果有助于理解土体水力劈裂的成因和过程,可用于对土工结构物的流固耦合破坏分析。
    Abstract: Hydraulic fracture will have a serious negative impact on the safety of core rockfill dams. Macroscopically, the hydraulic fracture of soils can be regarded as the failure process of further development of local cracks (weak surfaces) under the action of hydraulic wedge splitting. XFEM is a numerical simulation method which can effectively describe cracks. In this study, XFEM combined with the Biot’s consolidation theory is used to deal with the crack element, so that the hydraulic fracturing process of soils is described by both the dispersive crack state and the embedded crack shape. The method is verified by a model example and a practical engineering example of Hyttejuvet dam in Norway. The results of this work are helpful to understand the cause and process of hydraulic fracture of soils, and can be used for fluid-solid coupling failure analysis of soil structures.
  • 图  1   非线性边值问题示意图

    Figure  1.   Schematic diagram for nonlinear boundary value problems

    图  2   裂缝单元内的渗透系数

    Figure  2.   Permeability coefficient in fracture unit

    图  3   数值试验的计算网格

    Figure  3.   Computational grids for numerical experiments

    图  4   Y方向应力随裂缝发展的分布云图

    Figure  4.   Nephogram of vertical stress distribution with crack development

    图  5   位移放大5倍的典型时刻孔压分布云图

    Figure  5.   Nephogram of pore pressure distribution at typical time with displacement magnification of 5 times

    图  6   Hyttejuvet坝的布置图(Kjaernsli等[10]

    Figure  6.   Layout of Hyttejuvet dam (Kjaernsli et al[10])

    图  7   Hyttejuvet坝的纵剖面图

    Figure  7.   Longitudinal profile of Hyttejuvet dam

    图  8   Hyttejuvet坝填筑高程变化图

    Figure  8.   Change height of Hyttejuvet dam filling

    图  9   Hyttejuvet坝渗漏量变化(Kjaernsli和Torblaa,1968)

    Figure  9.   Change of seepage of Hyttejuvet dam reservoir (Kjaernsli and Torblaa, 1968)

    图  10   Hyttejuvet坝计算网格

    Figure  10.   Computational grid of Hyttejuvet dam

    图  11   两组模型参数常规三轴试验对比

    Figure  11.   Comparison of two sets of model parameters in conventional triaxial tests

    图  12   两组模型计算的坝体竖向应力分布

    Figure  12.   Distribution of vertical stress of dam body calculated by two sets of models

    图  13   Hyttejuvet坝典型时刻超静孔压的分布

    Figure  13.   Distribution of excess pore pressure at typical time of Hyttejuvet dam

    图  14   各测点孔压的监测值和计算值

    Figure  14.   Measured and calculated values of pore pressure at each measuring point

    图  15   初始薄弱面的位置

    Figure  15.   Position of initial weak surface

    图  16   薄弱面单元的竖向应力变化过程

    Figure  16.   Change process of vertical stress of weak surface element

    图  17   水力劈裂发生后,746 m水头稳定渗流云图

    Figure  17.   Nephogram of stable seepage after hydraulic fracture under head of 746 m

    图  18   水力劈裂击穿心墙过程中的压力水头云图(单位:m)

    Figure  18.   Nephograms of water pressure in hydraulic fracture breaking through core wall (Unit: m)

    表  1   数值试验的材料参数

    Table  1   Material parameters of numerical experiments

    材料类型弹性模量 E/MPa泊松比 υ渗透系数/(m·s-1)
    kxky
    堆石体10.00.311
    压实黏土1.00.31×10-81×10-8
    软弱单元0.010.211×10-8
    下载: 导出CSV

    表  2   坝体材料参数

    Table  2   Dam material parameters

    材料φ0/(°)Δφ/(°)KKbnmRfk/(m·d-1)
    心墙40.010.0300100.00.200.31.06.05×10-5
    堆石55.010.01757805.00.270.21.01944
    下载: 导出CSV
  • [1]

    LO K Y, KANIARU K. Hydraulic fracture in earth and rock-fill dams[J]. Canadian Geotechnical Journal, 1990, 27(4): 496-506. doi: 10.1139/t90-064

    [2] 沈珠江, 易进栋, 左元明. 土坝水力劈裂的离心模型试验及其分析[J]. 水利学报, 1994(9): 67-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB409.008.htm

    SHEN Zhu-jiang, YI Jin-dong, ZUO Yuan-ming. Centrifuge model test of hydraulic fracture of earth dam and its analysis[J]. Journal of Hydraulic Engineering, 1994(9): 67-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB409.008.htm

    [3] 王俊杰, 朱俊高, 张辉. 关于土石坝心墙水力劈裂研究的一些思考[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5664-5668. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2068.htm

    WANG Jun-jie, ZHU Jun-gao, ZHANG Hui. Some ideas on study of hydraulic fracturing of core of earth-rockfill dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S2): 5664-5668. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2068.htm

    [4] 曾开华, 殷宗泽. 土质心墙坝水力劈裂影响因素的研究[J]. 河海大学学报(自然科学版), 2000, 28(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200003000.htm

    ZENG Kai-hua, YIN Zong-ze. Factors affecting hydraulic fracturing of high earth core dams[J]. Journal of Hohai University(Natural Science), 2000, 28(3): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200003000.htm

    [5] 张丙印, 李娜, 李全明, 等. 土石坝水力劈裂发生机理及模型试验研究[J]. 岩土工程学报, 2005, 27(11): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200511009.htm

    ZHANG Bing-yin, LI Na, LI Quan-ming, et al. Mechanism analysis and model test of hydraulic fracturing in embankment dams[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 1277-1281. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200511009.htm

    [6]

    WANG X, YU P, YU J, et al. Simulated crack and slip plane propagation in soil slopes with embedded discontinuities using XFEM[J]. International Journal of Geomechanics, 2018, 18(12). doi: 10.1061/(ASCE)GM.1943-56220001-0001290.

    [7]

    SONG J H, AREIAS P M A, BELYTSCHKO T. A method for dynamic crack and shear band propagation with phantom nodes[J]. International Journal for Numerical Methods in Engineering, 2006, 67(6): 868-893. doi: 10.1002/nme.1652

    [8] 李全明, 张丙印, 于玉贞, 等. 土石坝水力劈裂发生过程的有限元数值模拟[J]. 岩土工程学报, 2007, 29(2): 212-217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702011.htm

    LI Quan-ming, ZHANG Bing-yin, YU Yu-zhen, et al. Numerical simulation of the process of hydraulic fracturing in earth and rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 212-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702011.htm

    [9] 李全明. 高土石坝水力劈裂发生的物理机制研究及数值仿真[D]. 北京: 清华大学, 2006.

    LI Quan-ming. Mechanism Study and Numerical Simulation of Hydraulic Fracturing in High Earth and Rockfill Dam[D]. Beijing: Tsinghua University, 2006. (in Chinese)

    [10]

    KJAERNSLI B, TORBLAA I. Leakage Through Horizontal Cracks in the Core of Hyttejuvet Dam[R]. Oslo, Norwag: Norwegian Geotechnical Insitute, 1968: 39-47.

    [11]

    NG K L A, SMALL J C. Simulation of dams constructed with unsaturated fills during construction and water impounding[C]//Proceedings of the 1st International Conference on Unsaturated Soils. Paris, 1995: 281-286.

    [12]

    NG K L A, SMALL J C. Behavior of joints and interfaces subjected to water pressure[J]. Computers and Geotechnics, 1997, 20(1): 71-93.

    [13]

    NG K L A, SMALL J C. A case study of hydraulic fracturing using finite element methods[J]. Canadian Geotechnical Journal, 1999, 36: 861-875.

  • 期刊类型引用(7)

    1. 黄晓洪,焦修明,王良,魏匡民,邓曌. 高心墙堆石坝蓄水初期裂缝成因反演分析研究. 三峡大学学报(自然科学版). 2025(02): 19-25 . 百度学术
    2. 程章,何奔,潘华林,朱建才,洪义,赵俞成. 筒形基础对浅层气运移的影响及其对基础稳定性的影响. 太阳能学报. 2023(03): 218-224 . 百度学术
    3. 李晓龙,陈坤洋,陈灿,李媛媛,钟燕辉,张蓓,王复明. XFEM和修正剑桥模型模拟高聚物劈裂注浆方法研究. 水力发电学报. 2023(07): 24-36 . 百度学术
    4. 程章,赵俞成,洪义,王立忠. 海底水气突涌运移规律与麻坑半径定量评价. 中南大学学报(自然科学版). 2022(03): 890-898 . 百度学术
    5. 刘东海,王静静. 胶结砾质土心墙坝应力变形及裂缝扩展研究. 天津大学学报(自然科学与工程技术版). 2022(08): 783-791 . 百度学术
    6. 邓刚,陈辉,张茵琪,张延亿,张幸幸,侯伟亚. 基于坝壳湿化过程数值模拟的心墙坝初蓄水力劈裂机理研究. 中国水利水电科学研究院学报. 2021(01): 90-98 . 百度学术
    7. 邓刚,皇甫泽华,武颖利,张延亿,陈辉,张茵琪,杨玉生. 土质心墙土石坝变形协调控制发展与展望. 水力发电学报. 2020(05): 1-16 . 百度学术

    其他类型引用(8)

图(18)  /  表(2)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  17
  • PDF下载量:  157
  • 被引次数: 15
出版历程
  • 收稿日期:  2019-01-11
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-01-31

目录

    /

    返回文章
    返回