Loading [MathJax]/jax/output/SVG/fonts/TeX/fontdata.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

软黏土中劲性复合桩水平承载特性p-y曲线研究

王安辉, 章定文, 谢京臣

王安辉, 章定文, 谢京臣. 软黏土中劲性复合桩水平承载特性p-y曲线研究[J]. 岩土工程学报, 2020, 42(2): 381-389. DOI: 10.11779/CJGE202002020
引用本文: 王安辉, 章定文, 谢京臣. 软黏土中劲性复合桩水平承载特性p-y曲线研究[J]. 岩土工程学报, 2020, 42(2): 381-389. DOI: 10.11779/CJGE202002020
WANG An-hui, ZHANG Ding-wen, XIE Jing-chen. p-y curves for lateral bearing behavior of strength composite piles in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 381-389. DOI: 10.11779/CJGE202002020
Citation: WANG An-hui, ZHANG Ding-wen, XIE Jing-chen. p-y curves for lateral bearing behavior of strength composite piles in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 381-389. DOI: 10.11779/CJGE202002020

软黏土中劲性复合桩水平承载特性p-y曲线研究  English Version

基金项目: 

国家重点研发计划项目 2016YFC0800200

详细信息
    作者简介:

    王安辉(1989— ),男,博士研究生,主要从事交通岩土与桩基工程方面的研究。E-mail:230169700@seu.edu.cn

    通讯作者:

    章定文, E-mail:zhangdw@seu.edu.cn

  • 中图分类号: TU473.11

p-y curves for lateral bearing behavior of strength composite piles in soft clay

  • 摘要: 劲性复合桩(SC桩)是一种将高强度混凝土桩与水泥土桩相结合的新型桩基。为研究软黏土中SC桩水平承载力理论计算方法,将水泥土视为硬黏土,基于现有软黏土和硬黏土中桩基的p-y曲线形式,考虑水平荷载作用下桩周水泥土和软黏土的土抗力分担比例,推导了p-y曲线中两个重要参数puy50的修正因子,进而建立了软黏土中SC桩水平承载特性p-y曲线计算方法。通过与3个现场试验的实测结果的对比分析,验证所建立的p-y曲线法的准确性与可靠性,继而开展SC桩水平受荷性能影响因素分析。结果表明:所建立的理论计算方法可以有效预测SC桩的水平承载特性,且当桩身变形较大时应考虑混凝土芯桩的非线性影响。水泥土桩桩径(D)对SC桩水平承载性能影响显著,当水泥土桩与混凝土芯桩的桩径比(D/d)从1.0增至3.0时,120 kN水平荷载下的桩头位移从25.8 mm减至5.1 mm,且桩身最大弯矩值减小51.0%;桩身水平承载性能受水泥土桩桩长(L)的影响较大,但当长径比(L/d)超过10后,桩身内力位移趋于稳定值;适当地增加水泥土桩强度与混凝土芯桩弹性模量也可提高SC桩的水平承载性能。
    Abstract: The strength composite (SC) pile is a novel type of pile technology which combines high-strength concrete piles and deep cement-mxing (DCM) columns. To attain a theoretical approach for the lateral bearing capacity of SC piles in soft clay, the cement-improved soil is assumed to be the stiff clay. Then, considering the proportion of lateral resistance provided by the cement-improved soil, as well as the soft clay surrounding the pile, the modification factors of pu and y50 are deduced based on the typical p-y curves for both soft and stiff clays. Subsequently, a modified p-y curve model is initially established to predict the lateral response of SC piles in soft clay. The assessments using the measured response of the SC piles from three field tests are then performed to verify the accuracy and reliability of the proposed p-y curve approach. Furthermore, a parametric study is conducted to clarify the influences of the related parameters on the lateral response of the SC piles. The results illustrate that the proposed analytical approach may effectively predict the lateral response of the SC piles. Evidently, when the lateral deformation of the piles is relatively large, the nonlinear behavior of the concrete-cored piles should be considered. The diameter of the DCM columns (D) has a significant effect on the lateral behavior of the SC piles. Specifically, when the column-pile diameter ratio (D/d) varies from 1.0 to 3.0, the deflections at the pile-head decreases from 25.8 to 5.1 mm at a lateral load level of 120 kN, and the peak bending moment decreases by 51.0%. The lateral performance of the SC piles is greatly affected by the length of the DCM columns (L), however, when the length-diameter ratio (L/d) exceeds 10, the internal force and displacement of the piles stabilize with negligible variation. Additionally, the lateral bearing behavior of the SC piles may also be improved by appropriately increasing the strength of the cement-mixing columns as well as the elastic modulus of the concrete-cored piles.
  • 图  1   水平受荷桩p-y曲线模型[22-23]

    Figure  1.   p-y curve model for laterally loaded piles[22-23]

    图  2   桩周土体的弹簧刚度[28]

    Figure  2.   Spring stiffness of soils around piles[28]

    图  3   SC桩桩-土相互作用力学模型

    Figure  3.   Mechanical model for SC pile-soil interaction

    图  4   桩周土抗力衰减函数曲线

    Figure  4.   Attenuation curves of soil resistance surrounding piles

    图  5   软黏土、硬黏土和复合土体p-y曲线的关系

    Figure  5.   Relationship among p-y curves for soft clay, stiff clay and composite soils

    图  6   桩截面弯矩-曲率关系

    Figure  6.   Moment-curvature relationship for pile section

    图  7   桩头荷载-位移曲线理论计算与实测结果对比

    Figure  7.   Comparison between calculated and measured lateral load-deflection curves

    图  8   水泥土桩桩径的影响

    Figure  8.   Effects of diameter of cement-mixing columns

    图  9   水泥土桩桩长的影响

    Figure  9.   Effects of length of cement-mixing column

    图  10   水泥土不排水抗剪强度的影响

    Figure  10.   Effects of undrained shear strength of cement-improved soils

    图  11   芯桩弹性模量的影响

    Figure  11.   Effect of the elastic modulus of core piles

    表  1   ε50取值[22-23, 26]

    Table  1   Values of ε50 [22-23, 26]

    cu/kPaε50
    0~240.020
    24~480.010
      48~960.006
    96~2000.005
    200~4000.004
    400~10000.003
    下载: 导出CSV

    表  2   土体参数

    Table  2   Soil parameters

    案例土层名称z/mw/%γ/(kN·m-3)eIPIL µc/kPaφ/(°)Es/MPacu/kPaε50
    1粉质黏土0~2.229.719.00.85814.60.710.4029.616.65.1025.00.010
    淤泥质粉质黏土2.2~4.337.218.31.04313.71.360.4514.210.43.7218.20.020
    粉质黏土夹粉土4.3~11.028.218.90.83910.10.800.3512.918.77.8455.30.006
    2 淤泥质粉质黏土0~3.041.617.71.18816.01.180.4515.07.12.9224.00.015
    粉质黏土3.0~6.426.419.60.76113.70.440.4030.510.85.1235.40.010
    残积土6.4~9.024.019.70.71317.30.150.3057.018.610.1120.00.005
    注:w为天然含水率;γ为土体重度;e为孔隙比;IP为塑性指数;IL为液性指数;µ为泊松比;c为黏聚力;φ为内摩擦角;Es为压缩模量。
    下载: 导出CSV
  • [1] 董平, 陈征宙, 秦然. 混凝土芯水泥土搅拌桩在软土地基中的应用[J]. 岩土工程学报, 2002, 24(2): 204-207. https://www.cnki.com.cn/Article/CJFDTOTAL-JSVF201106033.htm

    DONG Ping, CHEN Zheng-zhou, QIN Ran. Use of concrete-cored DCM pile in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 204-207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSVF201106033.htm

    [2] 钱于军, 许智伟, 邓亚光, 等. 劲性复合桩的工程应用与试验分析[J]. 岩土工程学报, 2013, 35(增刊2): 998-1001. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2190.htm

    QIAN Yu-jun, XU Zhi-wei, DENG Ya-guang, et al. Engineering application and test analysis of strength composite piles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 998-1001. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2190.htm

    [3] 刘汉龙, 任连伟, 郑浩, 等. 高喷插芯组合桩荷载传递机制足尺模型试验研究[J]. 岩土力学, 2010, 31(5): 1395-1401. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201005012.htm

    LIU Han-long, REN Lian-wei, ZHENG Hao, et al. Full-scale model test on load transfer mechanism for jet grouting soil-cement-pile strengthened pile[J]. Rock and Soil Mechanics, 2010, 31(5): 1395-1401. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201005012.htm

    [4]

    ZHOU J J, GONG X N, WANG K H, et al. A model test on the behavior of a static drill rooted nodular pile under compression[J]. Marine Georesources and Geotechnology, 2016, 34(3): 293-301. doi: 10.1080/1064119X.2015.1012313

    [5] 李俊才, 邓亚光, 宋桂华, 等. 素混凝土劲性水泥土复合桩承载机理分析[J]. 岩土力学, 2009, 30(1): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901041.htm

    LI Jun-cai, DENG Ya-guang, SONG Gui-hua, et al. Analysis of load-bearing mechanism of composite foundation of plain concrete reinforced cement-soil mixing piles[J]. Rock and Soil Mechanics, 2009, 30(1): 181-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901041.htm

    [6]

    JAMSAWANG P, BERGADO D T, VOOTTIPRUEX P. Field behaviour of stiffened deep cement mixing piles[J]. Proceedings of the Institution of Civil Engineers Ground Improvement, 2011, 164(1): 33-49. doi: 10.1680/grim.900027

    [7]

    ZHOU J J, GONG X N, WANG K H, et al. Testing and modeling the behavior of pre-bored grouting planted piles under compression and tension[J]. Acta Geotechnica, 2017, 12(5): 1061-1075. doi: 10.1007/s11440-017-0540-6

    [8]

    WONGLERT A, JONGPRADIST P. Impact of reinforced core on performance and failure behavior of stiffened deep cement mixing piles[J]. Computers and Geotechnics, 2015, 69: 93-104. doi: 10.1016/j.compgeo.2015.05.003

    [9] 任连伟, 刘希亮, 王光勇. 高喷插芯组合单桩荷载传递简化计算分析[J]. 岩石力学与工程学报, 2010, 29(6): 1279-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006026.htm

    REN Lian-wei, LIU Xi-liang, WANG Guang-yong. Simplified calculation and analysis of load transfer behavior for single JPP[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1279-1287. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006026.htm

    [10]

    WANG A H, ZHANG D W, DENG Y G. A Simplified approach for axial response of single precast concrete piles in cement-treated soil[J]. International Journal of Civil Engineering, 2018, 16(10): 1491-1501.

    [11]

    ROLLINS K M, ADSERO M E, DAN A B. Jet grouting to increase lateral resistance of pile group in soft clay[C]//Proceedings of International Foundation Congress and Equipment Expo. Orlando, 2009: 265-272.

    [12] 黄银冰, 赵恒博, 顾长存, 等. 考虑水泥土桩增强作用的灌注桩水平承载性能现场试验研究[J]. 岩土力学, 2013, 34(4): 1109-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304034.htm

    HUANG Yin-bing, ZHAO Heng-bo, GU Chang-cun, et al. Field experimental study of lateral load capacity of filling pile enhanced by soil-cement pile[J]. Rock and Soil Mechanics, 2013, 34(4): 1109-1115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304034.htm

    [13]

    WANG L Z, HE B, HONG Y, et al. Field tests of the lateral monotonic and cyclic performance of jet grouting Reinforced cast-in-place piles[J]. Journal of Geotechnica and Geoenvironmental Engineering, 2015, 141(5): 06015001.

    [14]

    HE B, WANG L Z, HONG Y. Field testing of one-way and two-way cyclic lateral responses of single and jet-grouting reinforced piles in soft clay[J]. Acta Geotechnica, 2017, 12(5): 1021-1034.

    [15]

    HONG Y, HE B, WANG L Z, et al. Cyclic lateral response and failure mechanisms of semi-rigid pile in soft clay: centrifuge tests and numerical modelling[J]. Canadian Geotechnical Journal, 2017, 54(6): 806-824.

    [16]

    FARO V P, CONSOLI N C, SCHNAID F, et al. Field tests on laterally loaded rigid piles in cement treated soils[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2015, 141(6): 06015003.

    [17]

    FARO V P, SCHNAID F, CONSOLI N C. Laterally loaded field tests of flexible piles in bonded residual soil reinforced with top cement treated sand layers[J]. Proceedings of the Institution of Civil Engineers—Ground Improvement, 2018, 171(3): 174-182.

    [18] 王安辉, 章定文, 刘松玉, 等. 水平荷载下劲性复合管桩的承载特性研究[J]. 中国矿业大学学报, 2018, 47(4): 853-861. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804020.htm

    WANG An-hui, ZHANG Ding-wen, LIU Song-yu, et al. Bearing capacity behavior of strength composite pipe pile subjected to lateral loading[J]. Journal of China University of Mining & Technology, 2018, 47(4): 853-861. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804020.htm

    [19]

    WANG A H, ZHANG D W, DENG Y G. Lateral response of single piles in cement-improved soil: numerical and theoretical investigation[J]. Computers and Geotechnics, 2018, 102: 164-178.

    [20] 李立业. 劲性复合桩承载特性研究[D]. 南京: 东南大学, 2016.

    LI Li-ye. Study on the Bearing Capacity of Stiffened DCM Pile[D]. Nanjing: Southeast University, 2016. (in Chinese)

    [21] 张孟环. 劲性复合桩的水平承载特性及其实用计算方法[D]. 南京: 东南大学, 2019.

    ZHANG Meng-huan. The Horizontal Bearing Capacity of the Strength Composite Pile and its Practical Calculation Method[D]. Nanjing: Southeast University, 2019. (in Chinese)

    [22]

    MATLOCK H. Correlation for design of laterally loaded piles in soft clay[C]//Proceedings of the 2nd Annual Offshore Technology Conference. Houston, 1970: 577-594.

    [23]

    REESE L C, WELCH R C. Lateral loading of deep foundations in stiff clay[J]. Journal of Geotechnical & Geoenvironmental Engineering, ASCE, 1975, 101(7): 633-649.

    [24]

    American Petroleum Institute. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-working Stress Design[S]. Washington D C: American Petroleum Institute Publishing Services, 1993.

    [25]

    Det Norske Veritas. Design of Offshore Wind Turbine Structures[S]. Oslo: Det Norske Veritas, 2007.

    [26]

    ASHOUR M, NORRIS G, PILLING P. Lateral loading of a pile in layered soil using the strain wedge model[J]. Journal of Geotechnical & Geoenvironmental Engineering, 1998, 124(4): 303-315.

    [27] 王惠初, 武冬青, 田平. 黏土中横向静载桩p-y曲线的一种新的统一法[J]. 河海大学学报(自然科学版), 1991, 19(1): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX199101001.htm

    WANG Hui-chu, WU Dong-qing, TIAN Ping. A new united method of p-y curves of laterally statically loaded piles in clay[J]. Journal of Hohai University (Natural Sciences), 1991, 19(1): 9-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX199101001.htm

    [28]

    TACIROGLU E, RHA C S, WALLACE J W. A robust macroelement model for soil-pile interaction under cyclic loads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(10): 1304-1314.

    [29]

    KHALILI-TEHRANI P, AHLBERG E, RHA C S, et al. Nonlinear load deflection behavior of reinforced concrete drilled piles in stiff clay[J]. Journal of Geotechnical & Geoenvironmental Engineering, ASCE, 2014, 140(3): 04013022.

    [30]

    GUO W D, LEE F H. Load transfer approach for laterally loaded piles[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2001, 25: 1101-1129.

    [31]

    HUANG J W. Development of Modified p-y Curves for Winkler Analysis to Characterize the Lateral Load Behavior of a Single Pile Embedded in Improved Soft Clay[D]. Ames: Iowa State University, 2011.

    [32]

    REESE L C, WANG S T. Analysis of piles under lateral loading with nonlinear flexural rigidity[C]//Proceedings of International Conference on Design and Construction of Deep Foundation. Orlando, 1994.

图(11)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-29
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-01-31

目录

    /

    返回文章
    返回