• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土体干缩开裂过程的边界效应试验与离散元模拟

林朱元, 唐朝生, 曾浩, 王怡舒, 程青, 施斌

林朱元, 唐朝生, 曾浩, 王怡舒, 程青, 施斌. 土体干缩开裂过程的边界效应试验与离散元模拟[J]. 岩土工程学报, 2020, 42(2): 372-380. DOI: 10.11779/CJGE202002019
引用本文: 林朱元, 唐朝生, 曾浩, 王怡舒, 程青, 施斌. 土体干缩开裂过程的边界效应试验与离散元模拟[J]. 岩土工程学报, 2020, 42(2): 372-380. DOI: 10.11779/CJGE202002019
LIN Zhu-yuan, TANG Chao-sheng, ZENG Hao, WANG Yi-shu, CHENG Qing, SHI Bin. Laboratory characterization and discrete element modeling of desiccation cracking behavior of soils under different boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 372-380. DOI: 10.11779/CJGE202002019
Citation: LIN Zhu-yuan, TANG Chao-sheng, ZENG Hao, WANG Yi-shu, CHENG Qing, SHI Bin. Laboratory characterization and discrete element modeling of desiccation cracking behavior of soils under different boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 372-380. DOI: 10.11779/CJGE202002019

土体干缩开裂过程的边界效应试验与离散元模拟  English Version

基金项目: 

国家杰出青年科学基金项目 41925012

国家自然科学基金项目 41572246

国家自然科学基金项目 41772280

国家自然科学基金项目 41902271

江苏省自然科学基金项目 BK20171228

江苏省自然科学基金项目 BK20170394

中央高校基本科研业务费专项资金项目 

详细信息
    作者简介:

    林朱元(1997— ),男,硕士研究生,主要从事地质工程及环境岩土工程方面的研究工作。E-mail:crecyslin@smail.nju.edu.cn

    通讯作者:

    唐朝生, E-mail:tangchaosheng@nju.edu.cn

  • 中图分类号: TU43

Laboratory characterization and discrete element modeling of desiccation cracking behavior of soils under different boundary conditions

  • 摘要: 为了探究土体干缩开裂过程的边界效应问题,采用不同底面粗糙度的容器开展了多组干燥试验,发现干缩裂隙存在从顶面向下和从底面向上两种典型的发育形式。并且,裂隙发育程度与土样/容器界面接触条件密切相关,从而验证了裂隙发育过程的边界效应。通过理论分析,阐明了上边界的蒸发条件及下边界的接触条件对裂隙发育形式的控制作用。为了能更深入地理解土体干缩开裂边界效应的内在机制,在试验的基础上建立离散元模型,创新性地引入了沿深度的失水速率梯度参数,模拟土样上边界的蒸发条件变化。通过设置底面摩擦系数,模拟土样下边界的接触条件变化。将模拟结果与试验结果进行了对比分析,发现二者具有较好的吻合度。总体上,土体干缩裂隙的发育过程是顶面蒸发失水与底面摩擦两种边界条件共同作用的结果。当底面摩擦系数相对较小时,裂隙发育由蒸发失水主导,大部分裂隙由顶面向下发育。随着底面摩擦系数的增加,底面接触条件对裂隙发育过程的主导作用逐渐增强,由底面向上发育的裂隙数量所占比重也相应增加。
    Abstract: In order to explore the boundary effect of the desiccation cracking process, multiple sets of drying tests are carried out using the containers with different bottom roughnesses. Two different forming patterns can be observed in the laboratory tests, initiating from the top/bottom, and there is propagation closely related to the sample/container interface contact conditions. This verifies the boundary effect of the crack propagation. In order to understand the internal mechanism of the desiccation boundary effect of the soils more deeply, a discrete element model is established based on the drying tests. A water loss rate gradient parameter along the depth is introduced innovatively to simulate the change of the evaporation condition of the upper boundary of the soil samples. By setting the friction coefficient of the bottom surface, the contact condition of the lower boundary of the sample is simulated. The simulated results are compared with the experimental ones and found to have good agreement. In general, the initiation and propagation of desiccation cracks are the result of the combination of water loss due to surface evaporation and bottom friction. When the coefficient of friction of the bottom surface is relatively small, the development of the fracture is dominated by water loss, and most of the fractures develop from the top surface. With the increase of the friction coefficient of the bottom surface, the effect of the contact condition of the bottom surface on the development of the crack gradually increase, and the proportion of the number of cracks developed from the bottom surface increases accordingly.
  • 图  1   裂隙从顶面向下发育过程(E1组侧面局部放大)

    Figure  1.   Downward propagation of crack from top (side view of E1, enlarged)

    图  2   裂隙从底面向上发育过程(E1组侧面局部放大)

    Figure  2.   Upward propagation of crack from bottom (side view of E1, enlarged)

    图  3   室内试验最终裂隙图像(侧面)

    Figure  3.   Final crack patterns in laboratory tests (side view)

    图  4   contact bond模型的力学性质

    Figure  4.   Mechanical performance of contact bond model

    图  5   离散元模型初始状态

    Figure  5.   Original state of DEM model

    图  6   模拟结束时模型中的土样开裂情况

    Figure  6.   Final crack patterns of DEM samples

    图  7   3组摩擦系数对应不同失水速率梯度条件下的裂隙发育情况

    Figure  7.   Variation of crack development with water loss gradient under three different friction coefficients

    图  8   (a)模拟中裂隙从顶面向下发育情况;(b)模拟中裂隙 从底面向上发育情况(线段越粗表示颗粒间连接受力越.大,应力集中越明显)

    Figure  8.   Simulated results of crack initiating from (a) top and crack initiating from bottom (b) simulation results (greater line weight indicates stronger force in contact)

    表  1   室内试验参数

    Table  1   Parameters of laboratory tests

    试样编号砂纸规格/目砂颗粒粒径/mm摩擦系数初始厚度/cm
    E1800.1801
    E21200.1201
    E32400.0631
    下载: 导出CSV

    表  2   室内试验裂隙条数统计

    Table  2   Number of cracks in laboratory tests

    试样编号摩擦系数总裂隙条数顶面发育裂隙条数底面发育裂隙条数
    E1954
    E2532
    E3321
    下载: 导出CSV

    表  3   数值模拟裂隙条数统计(λ=0.05)

    Table  3   Number of cracks in numerical tests (λ=0.05)

    编号摩擦系数总裂隙条数顶面发育裂隙条数底面发育裂隙条数
    0.3853
    0.2541
    0.1330
    下载: 导出CSV
  • [1]

    LOZADA C, THOREL L, CAICEDO B. Effects of cracks and desiccation on the bearing capacity of soil deposits[J]. Géotechnique Letters, 2015, 5(3): 112-117. doi: 10.1680/jgele.15.00021

    [2] 袁俊平, 殷宗泽. 膨胀土裂隙的量化指标与强度性质研究[J]. 水利学报, 2004, 35(6): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200406019.htm

    YUAN Jun-ping, YIN Zong-ze. Quantitative index of fissure and strength characteristics of fissured expansive soils[J]. Journal of Hydraulic Engineering, 2004, 35(6): 108-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200406019.htm

    [3] 姚海林, 郑少河, 葛修润, 等. 裂缝膨胀土边坡稳定性评价[J]. 岩石力学与工程学报, 2002, 21(增刊2): 2331-2335.

    YAO Hai-lin, ZHENG Shao-he, GE Xiu-run, et al. Assessment on slope stability in cracking expansive soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(S2): 2331-2335. (in Chinese)

    [4]

    MITCHELL J K. Fundamentals of Soil Behavior[M]. New York: Wiley, 1993.

    [5]

    LAKSHMIKANTHAM. R, PRATPERE C, ALBERTO LEDESMA. Experimental evidence of size effect in soil cracking[J]. Canadian Geotechnical Journal, 2008, 49(3): 264-284.

    [6] 唐朝生, 施斌, 顾凯. 土中水分的蒸发过程试验研究[J]. 工程地质学报, 2011, 19(6): 875-881. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201106011.htm

    TANG Chao-sheng, SHI Bin, GU Kai. Experimental investigation on Evaporation process of water in soil during drying[J]. Journal of Engineering Geology, 2011, 19(6): 875-881. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201106011.htm

    [7] 唐朝生, 施斌, 刘春. 膨胀土收缩开裂特性研究[J]. 工程地质学报, 2012, 20(5): 663-673. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201205004.htm

    TANG Chao-sheng, SHI Bin, LIU Chun. Study on desiccation cracking behaviour of expansive soil[J]. Journal of Engineering Geology, 2012, 20(5): 663-673. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201205004.htm

    [8] 唐朝生, 王德银, 施斌, 等. 土体干缩裂隙网络定量分析[J]. 岩土工程学报, 2013, 35(12): 2298-2305. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312026.htm

    TANG Chao-sheng, WANG De-yin, SHI Bin, et al. Quantitative analysis of soil desiccation crack network[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2298-2305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312026.htm

    [9] 唐朝生, 施斌, 崔玉军. 土体干缩裂隙的形成发育过程及机理[J]. 岩土工程学报, 2018, 40(8): 1415-1423. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808008.htm

    TANG Chao-sheng, SHI Bin, CUI Yu-jun. Behaviors and mechanisms of desiccation cracking of soils[J]. Chinese Jouranl Geotechnical Engineering, 2018, 40(8): 1415-1423. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808008.htm

    [10]

    PERON H, HUECKEL T, LALOUI L, et al. Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification[J]. Canadian Geotechnical Journal, 2009, 46(10): 1177-1201. doi: 10.1139/T09-054

    [11]

    WEINBERGER R. Initiation and growth of cracks during desiccation of stratified muddy sediments[J]. Journal of Structural Geology, 1999, 21(4): 379-386. doi: 10.1016/S0191-8141(99)00029-2

    [12] 曾浩, 唐朝生, 林銮. 土体干缩裂隙发育方向及演化特征的层间摩擦效应研究[J]. 岩土工程学报, 2019, 41(6): 1172-1180. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906026.htm

    ZENG Hao, TANG Chao-sheng, LIN Luan. Interfacial friction dependence of propagation direction and evolution characteristics of soil desiccation cracks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1172-1180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906026.htm

    [13]

    CUNDALL P A, STRACK O D L. A discrete numerical mode for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.

    [14] 蒋明镜, 胡海军, 彭建兵. 结构性黄土一维湿陷特性的离散元数值模拟[J]. 岩土力学, 2013, 34(4): 1121-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304036.htm

    JIANG Ming-jing, HU Hai-jun, PENG Jian-bing. Simulation of collapsible characteristics of structural loess under one-dimensional compression condition by discrete element method[J]. Rock and Soil Mechanics, 2013, 34(4): 1121-1130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304036.htm

    [15] 张程林, 周小文. 砂土颗粒三维形状模拟离散元算法研究[J]. 岩土工程学报, 2015, 37(增刊1): 115-119. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1024.htm

    ZHANG Cheng-lin, ZHOU Xiao-wen. Algorithm for modelling three-dimensional shape of sand based on discrete element method[J]. Journal of Engineering Geology, 2015, 37(S1): 115-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1024.htm

    [16]

    PERON H, DELENNE J Y, LALOUI L, et al. Discrete element modelling of drying shrinkage and cracking of soils[J]. Computers & Geotechnics, 2009, 36(1/2): 61-69.

    [17] 司马军, 蒋明镜, 周创兵. 黏性土干缩开裂过程离散元数值模拟[J]. 岩土工程学报, 2013, 35(增刊2): 286-291. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2049.htm

    SIMA Jun, JIANG Ming-jing, ZHOU Chuang-bing, Numerical simulation of desiccation cracking of clay soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2003, 35(S2): 286-291. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2049.htm

    [18] 张晓宇, 许强, 刘春, 等. 黏性土失水开裂多场耦合离散元数值模拟[J]. 工程地质学报, 2017, 25(6): 1430-1437.

    ZHANG Xiao-yu, XU Qiang, LIU Chun, et al. Numerical simulation of drying cracking using multifield coupling discrete element method[J]. Journal of Engineering Geology, 2017, 25(6): 1430-1437. (in Chinese)

    [19]

    COSTA S, KODIKARA J, SHANNON B. Salient factors controlling desiccation cracking of clay in laboratory experiments[J]. Géotechnique, 2013, 63(1): 18-29.

    [20]

    KODIKARA J, CHOI X. A simplified analytical model for desiccation cracking of clay layers in laboratory tests[C]//Proceedings of the 4th International Conference on Unsaturated Soil. New York, 2006: 2558-2569.

    [21]

    SIMA J, JIANG M J, ZHOU C B. Numerical simulation of desiccation cracking in a thin clay layer using 3D discrete element modeling[J]. Computers and Geotechnics, 2014, 56: 168-180.

    [22]

    GUO M Y, HAN M C, YU X. Laboratory characterization and discrete element modeling of shrinkage[J]. Canadian Geotechnical Journal, 2016, 14: 5-13.

    [23] 冉龙洲, 宋翔东, 唐朝生. 干燥过程中膨胀土抗拉强度特性研究[J]. 工程地质学报, 2011, 19(4): 620-625. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201104029.htm

    RAN Long-zhou, SONG Xiang-dong, TANG Chao-sheng. Laboratorial investigation on tensile strength of expansive soil during drying[J]. Journal of Engineering Geology, 2011, 19(4): 620-625. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201104029.htm

    [24]

    El YOUSSOUFI M S, DELENNE J Y, RADIAI F. Self-stresses and crack formation by particle swelling in cohesive granular media[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 71(51): 5-7.

    [25] 刘昌黎, 唐朝生, 李昊达, 等. 界面粗糙度对土体龟裂影响的试验研究[J]. 工程地质学报, 2017, 25(5): 1314-1321. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201705018.htm

    LIU Chang-li, TANG Chao-sheng, LI Hao-da, et al. Experimental study on eddect of interfacial roughness on desiccation cracking behavior of soil[J]. Journal of Engineering Geology, 2017, 25(5): 1314-1321. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201705018.htm

    [26] 曾浩, 唐朝生, 刘昌黎, 等. 控制厚度条件下土体干缩开裂的界面摩擦效应[J]. 岩土工程学报, 2019, 41(3): 544-553. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903021.htm

    ZENG Hao, TANG Chao-sheng, LIN Chang-li, et al. Effect of boundary friction and layer thickness on soil desiccation cracking behavior[J]. Chinese Journal of Geotechnical Engineering, 2018, 41(3): 544-553. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903021.htm

    [27]

    ITASCA. PFC3D (Particle Flow Code in 3 Dimensions), Version 3.00[R]. Minneapolis: Itasca Consulting Group, Inc.; 2003.

    [28]

    AMARASIRI A L, KODIKARA J K, SUSANGA C. Numerical modelling of desiccation cracking[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2011, 35(1): 82-96.

    [29]

    JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique to generate homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597.

    [30]

    HILLIL D. Introduction to Environmental Soil Physics[M]. San Diego, CA: Elsevier Science, 2004.

  • 期刊类型引用(1)

    1. 梁靖宇,齐吉琳,张跃东,路德春,李昊雯. 考虑温度与围压影响的冻结砂土非正交弹塑性本构模型. 岩土工程学报. 2024(09): 1889-1898 . 本站查看

    其他类型引用(5)

图(8)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-03-27
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-01-31

目录

    /

    返回文章
    返回