• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

冻融循环对冻土-混凝土界面冻结强度影响的试验研究

何鹏飞, 马巍, 穆彦虎, 董建华, 黄永庭

何鹏飞, 马巍, 穆彦虎, 董建华, 黄永庭. 冻融循环对冻土-混凝土界面冻结强度影响的试验研究[J]. 岩土工程学报, 2020, 42(2): 299-307. DOI: 10.11779/CJGE202002011
引用本文: 何鹏飞, 马巍, 穆彦虎, 董建华, 黄永庭. 冻融循环对冻土-混凝土界面冻结强度影响的试验研究[J]. 岩土工程学报, 2020, 42(2): 299-307. DOI: 10.11779/CJGE202002011
HE Peng-fei, MA Wei, MU Yan-hu, DONG Jian-hua, HUANG Yong-ting. Experiment study on effects of freeze-thaw cycles on adfreezing strength at frozen soil-concrete interface[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 299-307. DOI: 10.11779/CJGE202002011
Citation: HE Peng-fei, MA Wei, MU Yan-hu, DONG Jian-hua, HUANG Yong-ting. Experiment study on effects of freeze-thaw cycles on adfreezing strength at frozen soil-concrete interface[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 299-307. DOI: 10.11779/CJGE202002011

冻融循环对冻土-混凝土界面冻结强度影响的试验研究  English Version

基金项目: 

国家重点研发计划重点专项项目 2017YFC0405101

国家自然科学基金项目 41630636

国家自然科学基金项目 41772325

详细信息
    作者简介:

    何鹏飞(1989— ),男,博士研究生,从事冻土力学与工程方面研究工作。E-mail:hepf17@163.com

    通讯作者:

    穆彦虎, E-mail:muyanhu@lzb.ac.cn

  • 中图分类号: TU445

Experiment study on effects of freeze-thaw cycles on adfreezing strength at frozen soil-concrete interface

  • 摘要: 为研究冻融循环作用对冻土-混凝土界面冻结强度的影响,对不同冻融循环次数、法向应力、试验温度及土体初始含水率条件下的冻结界面进行了系列直剪试验,研究经历冻融循环后界面峰值剪切强度、残余剪切强度及强度参数的变化规律。试验结果表明:冻融循环对界面剪切应力与水平位移曲线形态影响很小,经历20次循环后曲线仍是应变软化型。冻融循环对峰值剪切应力的影响强于对残余剪切应力的影响,表明其对界面胶结冰含量产生影响。当土体初始含水率较低且温度较高时,冻融循环使界面峰值剪切强度增加,但变化量较小。然而在含水率较高(20.8%)及试验温度较低时(-5℃),峰值剪切强度随着冻融循环增加而降低。因此在土体含水率较高且冻结温度较低时,对于发生小变形的冻结界面需要重视冻融循环对峰值剪切应力的影响。不同初始含水率、试验温度下冻融循环对残余剪切强度的影响较小且变化规律不明显。在试验温度为-1℃,-3℃,-5℃时,峰值黏聚力随冻融循环增加分别表现为增加、波动和下降,推测是由于界面胶结冰含量不同而引起。峰值摩擦角和残余摩擦角随冻融循环次数增加略有变化。
    Abstract: In order to study the effects of freeze-thaw cycles on the adfreezing strength between frozen soil and concrete interface, a series of direct shear tests are conducted with different numbers of freeze-thaw cycles under different normal stresses, test temperatures and initial water contents. The peak shear strength, residual shear strength, shear strength parameters are used to analyze the adfreezing strength at the interface. The test results show that the shear behaviors of the interface are still strain-softening after 20 cycles. The influences of freeze-thaw cycles on the peak shear stress are stronger than those on the residual shear stress, indicating that they have an effect on the content of ice crystal of the interface. When the water content of the soil is low and the test temperature is high, the peak shear strength lightly increases with the increasing cycles, and it decreases obviously at water content of 20.8% and test temperature of -5℃. Therefore, it is necessary to pay attention to the influences of freeze-thaw cycles on the peak shear stress under high water content, low test temperature and small deformation of the structural interface. The cycles have few influences on the residual shear stress. The peak cohesions of the interface increase, become stable and decrease with the increasing cycles at the test temperature of -1℃, -3℃ and -5℃, respectively, which is presumed to be caused by the water migration of the soil near the interface. The peak and residual interface friction angles are influenced slightly by the cycles.
  • 堰塞坝是指在一定的地质与地貌条件下,由于地震或降雨等引起的山崩、滑坡、泥石流等阻塞山谷、河道所形成的堆积体[1]。作为自然过程的产物,堰塞坝呈现出级配宽泛、形状不规则、结构复杂等特点[2]。堰塞坝在世界范围内广泛存在,特别是近年来极端天气和地质灾害频发,导致堰塞坝数量显著增多[3-4]。与人工填筑坝不同,堰塞坝是由土壤和岩石在自然不稳定状态下混合而成,缺少溢洪道或泄流槽[2]。因此,一旦上游持续来流,堰塞坝的溃决风险远高于人工填筑坝。Shen等[5]对352个具有寿命信息的堰塞坝进行统计分析,发现生存时间小于1 d的占29.8%,小于1个月的占68.2%,小于1 a的占84.4%。

    漫顶和渗透破坏是堰塞坝最常见的溃坝模式[4],94%的堰塞坝因漫顶而溃坝,5%因渗透破坏而溃坝,1%因坝坡失稳而溃坝[2]。因此,深入研究堰塞坝漫顶溃坝过程和溃决机理,对科学高效应急处置,最大限度减少其灾害损失至关重要。

    堰塞坝漫顶溃决是一个涉及水土耦合和结构破坏的复杂过程。物理模型试验是研究其漫顶溃坝过程和溃决机理的常用手段,近年来,学者们开展了一系列模型试验,包括大尺度模型试验(坝高 > 1 m)[6]和小尺度模型试验(坝高 < 1 m)[7-8]。小尺度试验模型与原型应力水平差别显著,试验结果往往与实际存在差异,不同学者得到的结论也不一致。虽然大尺度试验的结果更接近原型坝,但试验成本高、周期长、风险难以控制。在高速旋转条件下,土工离心机产生的超重力场具有“时空放大”效应,可以在小尺度模型中产生原型级别的有效应力,同时满足坝体材料、水动力条件等相似准则。因此,离心模型试验可以用于研究由宽级配坝料组成的堰塞坝的漫顶溃决,它能够以较低成本在短时间内再现其漫顶溃坝过程,这对于揭示其漫顶溃决机理和溃坝过程具有重要意义和价值。

    本文利用离心模型试验研究了堰塞坝漫顶溃决问题,揭示了溃决机理、溃口演化规律及溃口流量过程,首次通过离心模型试验研究了坝高、下游坡比和坝料级配对堰塞坝漫顶溃坝过程的影响,为堰塞坝漫顶溃坝过程和溃决机理的认知提供了科学参考。

    以400g·t土工离心机为基础,南京水利科学研究院研制了溃坝离心模型试验系统[9],主要由大流量水流控制系统、专用模型箱、数据采集系统和图像记录装置组成(如图 1)。

    图  1  溃坝离心模型试验系统
    Figure  1.  Centrifugal model test system for dam breaching

    以与离心机同轴旋转的环形接水环为核心,试验用水由屋顶水箱提供,据试验前设定的供水流量过程,由伺服水阀流量控制系统精确控制上游来水条件,入水口与接水环无硬件接触,输水流量也不受接触限制,实现了从1g重力场到Ng重力场的水流转化。该系统可持续提供足够的溃坝水流,最大流量达50 L/s。

    有效尺寸为1.2 m×0.4 m×0.8 m(长×宽×高)(如图 2(a)),在模型箱下游端嵌入薄壁矩形量水堰,并安装2个孔压传感器(如图 2(b)),输出信号为电压信号,可转换为水深,以获得准确的溃口流量过程。溃口流量可根据水深采用下式计算:

    Q=m0Bw2Nght1.5
    (1)
    图  2  模型箱及孔压传感器布置
    Figure  2.  Model box and arrangement of pore pressure sensors

    式中:Q为溃口流量;m0为流量系数;Bw为量水堰宽度;Ng为离心机加速度;h为水深;t为时间。

    数据采集系统由转臂上的数据采集模块和地面上的工控机组成,孔压传感器与数据采集系统相连。图像记录装置为分别位于模型箱顶部和侧面的相机。

    溃坝是典型的水土耦合过程,在使用离心机进行溃坝探究时,需建立应力和溃坝水流的相似准则,推导方法详见文献[9],常用物理量的相似准则见表 1

    表  1  常用物理量相似准则
    Table  1.  Similarity criteria of common physical quantities
    物理量 加速度 长度 面积 体积 应力
    相似比(模型/原型) N 1/N 1/N2 1/N3 1
    物理量 孔隙比 密度 质量 流量 时间
    相似比(模型/原型) 1 1 1/N3 1/N2 1/N
    下载: 导出CSV 
    | 显示表格

    选择坝高、下游坡比、坝料级配3个影响因素进行试验设计,利用溃坝离心模型试验系统进行4种工况下堰塞坝漫顶溃决试验,探究溃口形态演化规律、溃口流量过程,以及不同影响因素对漫顶溃坝过程的影响,揭示堰塞坝漫顶溃决机理。

    基于模型箱尺寸、供水条件及试验用坝料,设定了各工况试验参数(见表 2)。以唐家山堰塞坝现场采样的平均级配为原型级配,试验坝料最大粒径设为40 mm,用等量替代法得到模型级配(见图 3)。

    表  2  4种工况参数设定
    Table  2.  Parameter settings of four conditions
    工况 坝高/mm 下游坡比 d50/mm
    1 250 1∶3 5
    2 350 1∶3 5
    3 250 1∶5 5
    4 250 1∶3 1
    注:d50为级配平均粒径。
    下载: 导出CSV 
    | 显示表格
    图  3  试验坝料级配曲线
    Figure  3.  Grain-size distribution curves of dam materials

    坝料经晾晒、筛分后分为5个粒径组,分别为40~20,20~10,10~5,5~1, < 1 mm。土料相对质量密度为2.75,试样孔隙率设为28%,对应干密度为1.98 g/cm3,含水率设为5%。离心加速度设置为50g。为了便于观察溃口下切和下游坡冲蚀情况,在模型箱钢化玻璃一侧开设初始溃口,初始溃口形状为梯形,顶宽70 mm,底宽30 mm,高40 mm。

    各工况试验按照如下步骤依次进行:①土样准备;②模型坝制作;③离心机配重;④孔压传感器与相机安装;⑤溃坝试验;⑥试验数据测量、记录与保存;⑦机室清理。

    以工况4为例分析堰塞坝漫顶溃坝过程与溃决机理,并基于各工况试验结果,分别比较坝高、下游坡比和坝料级配对溃坝过程的影响。下文中试验结果均已按照相似准则换算为原型坝的物理量。

    两台相机记录了工况4溃坝过程的视频,通过对溃口形态和流量演化过程中的突变进行分析,将堰塞坝漫顶溃决的过程分为4个阶段。

    阶段1:表层冲刷。溃坝初期,漫顶水流从溃口溢出,对下游坡进行冲蚀。坝体表面细颗粒被水流带走,形成高浓度挟砂水流,此阶段溃口变化不明显。

    阶段2:溯源冲蚀。由于下游坡脚处水流流速更大,初始冲坑在此形成,在水动力作用下冲坑逐渐向上游发展直至坝顶,此阶段下游坝坡明显变缓。

    阶段3:沿程侵蚀。坝顶高程在溯源冲蚀结束后突然下降,溃口水动力条件突然增加,溃口迅速下切展宽,并伴随溃口边坡的失稳,溃口流量出现峰值。

    阶段4:溃口稳定。随着上游水位下降,水流冲蚀能力减弱。粗颗粒滞留在下游边坡,导致边坡粗化,直至溃口不再发展,溃口流量趋于稳定。

    定义漫顶水流从溃口溢出时为初始时刻,各阶段选取典型坝体图像(如图 4),绘制了溃口处坝体纵剖面图(如图 5(a))。

    图  4  溃坝各阶段典型坝体图像
    Figure  4.  Typical dam images of each stage of dam breaching
    图  5  工况4溃口演化过程和溃口流量过程
    Figure  5.  Breach evolution process and breach flow discharge process of Condition 4

    试验前测定流量系数m0=0.278,h(t)可由孔压传感器读数得到,根据式(1)计算得到溃口流量过程。

    图 5(b)描绘了工况4原型坝的溃口流量过程。首先,在溃坝开始的最初几分钟,流量缓慢增加,对应阶段1。其次,流量迅速增大,在t=9.6 min时达到14.0 m3/s,对应阶段2。随后,流量增加的速率略有减慢,在t=13.4 min时达到峰值流量17.8 m3/s,并迅速下降,对应阶段3。最后,当t=38.3 min时,流量逐渐趋于稳定,溃口出流量等于入流量,对应阶段4。

    以工况1为对照组,通过改变坝高、下游坡比和坝料级配,研究不同因素对堰塞坝漫顶溃坝过程的影响。选取峰值流量、达峰时间和溃坝后的相对残余坝高(残余坝高与初始坝高的比值)3个溃坝参数进行比较分析(见表 3)。

    表  3  4种工况溃坝参数对比
    Table  3.  Comparison of dam breach parameters of four conditions
    工况 影响因素 峰值流量/(m3·s−1) 变化幅度/% 达峰时间/min 变化幅度/% 相对残余坝高/% 变化幅度/%
    1 11.4 18.9 66.4
    2 坝高 18.6 +62.6 16.1 -14.8 55.4 -16.5
    3 坡比 9.5 -16.6 24.5 +30.0 75.2 +13.3
    4 级配 17.8 +56.0 13.4 -29.0 47.2 -28.9
    注:变化幅度表示与工况1相比,各溃坝参数的增量。
    下载: 导出CSV 
    | 显示表格

    可以看出,各因素对溃坝参数的影响规律如下:当坝高增加或坝料平均粒径减小时,峰值流量显著增大,达峰时间提前,相对残余坝高减小;当下游坡比减小时,峰值流量减小,达峰时间明显推迟,相对残余坝高增大。溃口峰值流量对坝高最为敏感,平均粒径次之,达峰时间对下游坡比最为敏感,相对残余坝高对平均粒径最为敏感。

    下面从坝料冲蚀的角度对上述影响在机理层面上进行分析,坝料的冲蚀率可采用下式计算[10]

    E=kd(τbτc)
    (2)

    式中:E为冲蚀率;kd为冲蚀系数;τb为水流剪应力;τc为坝料临界起动剪应力。

    对比工况1和2,当堰塞坝坝高增加时,漫顶水流势能增加,水动力条件增强,τb增大,对下游坡冲蚀作用更强,故E增大,从而加快了溃坝进程与溃口发展。因此峰值流量增加,峰值时间提前,相对残余坝高减小。

    对比工况1和3,当堰塞坝下游坡比减小时,坝料颗粒自重在坝坡方向的分量减小,坝体自身更加稳定,τc增大,漫顶水流重力势能释放转换为动能的过程减缓,τb减小,故E减小,从而抑制了溃坝进程与溃口发展。因此峰值流量减小,峰值时间延后,相对残余坝高增加。

    对比工况1和4,在相同水动力条件下,当堰塞坝平均粒径减小,即坝体材料变细时,τc减小,坝体更容易被冲蚀,故E增大,从而加快了溃坝进程与溃口发展。因此峰值流量增加,峰值时间提前,相对残余坝高减小。

    (1)基于堰塞坝漫顶溃坝过程中的溃口形态和流量演化过程的突变特征,可将溃坝过程划分为4个阶段:表层冲刷、溯源冲蚀、沿程侵蚀和溃口稳定,并对每个阶段的出现时刻和发展过程进行了界定。

    (2)坝高、下游坡比和坝料级配对堰塞坝漫顶溃坝过程影响较大。当坝高增加或坝料平均粒径减小时,峰值流量增大,达峰时间提前,相对残余坝高减小;当下游坡比减小时,峰值流量减小,达峰时间推迟,相对残余坝高增大。

    (3)溃口峰值流量主要受坝高影响,其次是平均粒径;达峰时间对下游坡比最为敏感,相对残余坝高主要受平均粒径影响。

  • 图  1   试样图片及直剪仪示意图

    Figure  1.   Concrete sample, frozen soil-concrete sample and shear test apparatus

    图  2   单次冻融循环温度示意图

    Figure  2.   Temperature path of a freeze-thaw cycle

    图  3   不同冻融循环次数时界面剪切应力与水平位移曲线

    Figure  3.   Shear stress of interface vs. horizontal displacement at different freeze-thaw cycles

    图  4   峰值剪切强度-冻融循环次数关系

    Figure  4.   Peak shear strength vs. freeze-thaw cycles

    图  5   残余剪切强度-冻融循环次数关系

    Figure  5.   Residual shear strength vs. freeze-thaw cycles

    表  1   试验用土物理性质

    Table  1   Physical properties of test soil

    液限/%塑限/%土粒相对密度最大干密度/(g·cm-3)最优含水率/%粒径分布/%
    >0.25mm0.05~0.25 mm0.005~0.05 mm<0.005mm
    26.2918.242.71.912131.2214.5365.0719.18
    下载: 导出CSV

    表  2   不同冻融循环次数时峰值黏聚力

    Table  2   Peak cohesions at different freeze-thaw cycles

    温度/℃初始含水率/%峰值黏聚力/kPa
    0次循环5次循环10次循环20次循环
    -19.230.1615.9420.9036.27
    13.124.179.3920.7729.01
    17.123.737.6427.7742.81
    20.819.1923.53011.41
    -39.265.1744.3538.3818.65
    13.154.1378.4666.5557.92
    17.189.03121.8695.9292.14
    20.879.37103.2777.27102.88
    -59.252.7167.4279.40
    13.1145.21101.39163.8366.83
    17.1199.23146.0296.95
    20.8315.60203.41240.90226.41
    下载: 导出CSV

    表  3   不同冻融循环次数时峰值摩擦角

    Table  3   Peak friction angles at different freeze-thaw cycles

    温度/℃初始含水率/%峰值摩擦角/(°)
    0次循环5次循环10次循环20次循环
    -19.230.0735.6436.6936.76
    13.127.7035.7535.6036.72
    17.127.0733.3142.7439.65
    20.827.3834.8134.9539.85
    -39.230.3736.6142.6543.99
    13.132.1738.8043.4140.70
    17.128.1035.6435.4539.70
    20.827.1130.3143.2640.02
    -59.228.0641.4747.02
    13.126.5741.0237.0843.09
    17.131.7737.9542.30
    20.839.9939.3036.0430.47
    下载: 导出CSV

    3   不同冻融循环次数时残余摩擦角

    3   Residual friction angles at different freeze-thaw cycles

    温度/℃初始含水率/%残余摩擦角/(°)
    0次循环5次循环10次循环20次循环
    -19.232.6635.1134.8438.73
    13.131.2634.9536.4138.06
    17.131.3733.0334.3737.03
    20.830.9135.6034.3237.25
    -39.234.9338.1038.8639.73
    13.134.0336.9740.8140.55
    17.134.3834.9837.2641.42
    20.832.9636.1439.5438.51
    -59.233.7239.2240.5238.21
    13.135.9041.6740.2441.14
    17.135.2138.3141.62
    20.834.8936.9438.9442.28
    下载: 导出CSV
  • [1] 周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.

    ZHOU You-wu, GUO Dong-xin, QIU Guo-qing, et al. Geocryology in China[M]. Beijing: Science Press, 2000. (in Chinese)

    [2] 马巍, 王大雁. 中国冻土力学研究50 a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204009.htm

    MA Wei, WANG Da-yan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204009.htm

    [3]

    LAI Y, XU X, DONG Y, et al. Present situation and prospect of mechanical research on frozen soils in China[J]. Cold Regions Science and Technology, 2013, 87: 6-18. doi: 10.1016/j.coldregions.2012.12.001

    [4] 王大雁, 马巍, 常小晓, 等. 冻融循环作用对青藏黏土物理力学性质的影响[J]. 岩石力学与工程学报, 2005, 24(23): 4313-4319. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200523020.htm

    WANG Da-yan, MA Wei, CHANG Xiao-xiao, et al. Physico-mechanical properties changes of Qinghai- Tibet Clay due to cyclic freezing and thawing[J]. Chinese Journal of Geotechnical Engineering, 2005, 24(23): 4313-4319. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200523020.htm

    [5] 常丹, 刘建坤, 李旭, 等. 冻融循环对青藏粉砂土力学性质影响的试验研究[J]. 岩石力学与工程学报, 2014, 33(7): 1496-1502. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407023.htm

    CHANG Dan, LIU Jian-kun, LI Xu, et al. Experiment study of effects of freezing-thawing cycles on mechanical properties of Qinhai-Tibet silty sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1496-1502. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407023.htm

    [6]

    QI J, VERMEER P A, CHENG G. A review of the influence of freeze‐thaw cycles on soil geotechnical properties[J]. Permafrost and Periglacial Processes, 2006, 17(3): 245-252. doi: 10.1002/ppp.559

    [7]

    XIE S B, QIU J J, LAI Y M, et al. Effects of freeze- thaw cycles on soil mechanical and physical properties in the Qinghai-Tibet Plateau[J]. Journal of Mountain Science, 2015, 12(4): 999-1009. doi: 10.1007/s11629-014-3384-7

    [8] 侯鑫, 马巍, 李国玉, 等. 冻融循环对硅酸钠固化黄土力学性质的影响[J]. 冰川冻土, 2018, 40(1): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201801011.htm

    HOU Xin, MA Wei, LI Guo-yu, et al. Effects of freezing-thawing cycles on mechanical properties of loess solidified by sodium silicate[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 86-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201801011.htm

    [9] 刘晖, 刘建坤, 邰博文, 等. 冻融循环对含砂粉土力学性质的影响[J]. 哈尔滨工业大学学报, 2018, 50(3): 135-142. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201803019.htm

    LIU Hui, LIU Jian-kun, TAI Bo-wen, et al. Mechanical properties changes of sandy silt due to freeze-thaw cycles[J]. Journal of Harbin Institute of Technology, 2018, 50(3): 135-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201803019.htm

    [10]

    LU Z, XIAN S, YAO H, et al. Influence of freeze-thaw cycles in the presence of a supplementary water supply on mechanical properties of compacted soil[J]. Cold Regions Science and Technology, 2019, 157: 42-52. doi: 10.1016/j.coldregions.2018.09.009

    [11]

    PARAMESWARAN V R. Adfreeze strength of frozen sand to model piles[J]. Canadian Geotechnical Journal, 1978, 15(4): 494-500. doi: 10.1139/t78-053

    [12]

    QIU M, LI H, WANG K, et al. Experimental study on failure pattern of piles in frozen soil[J]. Journal of Harbin University of Civil Engineering and Architecture, 1999, 32(5): 39-42.

    [13]

    ALDAEEF A A, RAYHANI M T. Influence of exposure temperature on shaft capacity of steel piles in ice-poor and ice-rich frozen soils[C]//International Congress and Exhibition" Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology". Cham, 2018: 247-257.

    [14]

    PENNER E, IRWIN W. Adfreezing of leda clay to anchored footing columns[J]. Canadian Geotechnical Journal, 1969, 6(3): 327-337. doi: 10.1139/t69-031

    [15]

    BONDARENKO G I, SADOVSKII A V. Strength and deformability of frozen soil in contact with rock[J]. Soil Mechanics & Foundation Engineering, 1975, 12(3): 174-178.

    [16]

    BIGGAR K W, SEGO D C. The strength and deformation behaviour of model adfreeze and grouted piles in saline frozen soils[J]. Canadian Geotechnical Journal, 1993, 30(2): 319-337. doi: 10.1139/t93-027

    [17]

    LADANYI B. Frozen soil-structure interfaces[J]. Studies in Applied Mechanics, 1995, 42(6): 3-33.

    [18] 吉延俊, 贾昆, 俞祁浩, 等. 现浇混凝土-冻土接触面冻结强度直剪试验研究[J]. 冰川冻土, 2017, 39(1): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201701011.htm

    JI Yang-jun, JIA Kun, YU Qi-hao, et al. Direct shear tests of freezing strength at the interface between cast-in-situ concrete and frozen soil[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 86-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201701011.htm

    [19]

    WEN Z, YU Q, MA W, et al. Experimental investigation on the effect of fiberglass reinforced plastic cover on adfreeze bond strength[J]. Cold Regions Science and Technology, 2016, 131: 108-115. doi: 10.1016/j.coldregions.2016.07.009

    [20] 石泉彬, 杨平, 谈金忠, 等. 冻土与结构接触面冻结强度压桩法测定系统研制及试验研究[J]. 岩土工程学报, 2019, 41(1): 139-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901019.htm

    SHI Quan-bin, YANG Ping, TAN Jin-zhong, et al. Development of measuring system by pile-pressing method and experimental study on adfreezing strength at interface between frozen soil and structure[J]. Chinese Journal Geotechnical Engineering, 2019, 41(1): 139-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901019.htm

    [21] 陈拓, 赵光思, 赵涛. 寒区黏土与结构接触面冻结强度特性试验研究[J]. 地震工程学报, 2018, 40(3): 512-518. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201803017.htm

    CHEN Tuo, ZHAO Guang-si, ZHAO Tao. Experimental study on the freezing strength characteristicof clay-structure interface in cold regions[J]. China Earthquake Engineering Journal, 2018, 40(3): 512-518. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201803017.htm

    [22] 孙厚超, 杨平, 王国良. 冻土与结构接触界面层力学试验系统研制及应用[J]. 岩土力学, 2014, 35(12): 3636-3641. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412039.htm

    SUN Hou-chao, YANG Ping, WANG Guo-liang. Development of mechanical experimental system for interface layer between frozen soil and structure and its application[J]. Rock and Soil Mechanics, 2014, 35(12): 3636-3641. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412039.htm

    [23] 孙厚超, 杨平, 王国良. 冻黏土与结构接触界面层单剪力学特性试验[J]. 农业工程学报, 2015, 31(9): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201509010.htm

    SUN Hou-chao, YANG Ping, WANG Guo-liang. Monotonic shear mechanical characteristics and affecting factors of interface layers between frozen soil and structure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 57-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201509010.htm

    [24]

    WANG T L, WANG H H, HU T F, et al. Experimental study on the mechanical properties of soil-structure interface under frozen conditions using an improved roughness algorithm[J]. Cold Regions Science and Technology, 2019, 158: 6-68.

    [25]

    SHI Q B, YANG P, WANG G L. Experimental research on adfreezing strengths at the interface between frozen fine sand and structures[J]. Scientia Iranica, Transaction A, Civil Engineering, 2018, 25(2): 663-674.

    [26] 赵联桢, 杨平, 王海波. 大型多功能冻土-结构接触面循环直剪系统研制及应用[J]. 岩土工程学报, 2013, 35(4): 707-713. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304016.htm

    ZHAO Lian-zhen, YANG Pin, WANG Hai-bo. Development and application of large-scale multi-functional frozen soil-structure interface cycle-shearing system[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 707-713. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304016.htm

    [27] 石泉彬, 杨平, 张英明. 冻土与结构接触面冻结强度研究现状与展望[J]. 冰川冻土, 2017, 39(6): 1298-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201706016.htm

    SHI Quan-bin, YANG Ping, ZHANG Ying-ming. Adfreezing strength at the interface between frozen soil and structure:research status and prospect[J]. Journal of Glaciology and Geocyology, 2017, 39(6): 1298-1306. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201706016.htm

    [28] 陈肖柏, 刘建坤. 土的冻结作用与地基(精)[M]. 北京: 科学出版社, 2006.

    CHEN Xiao-bai, LIU Jian-kun. Frost Action of Soil and Foundation Engineering[M]. Beijing: Science Press, 2006. (in Chinese)

    [29] 土工试验规程:SL 237—1999[S]. 1999.

    SL 237—1999 Specification of Soil Test: SL 237—1999[S]. 1999. (in Chinese)

    [30] 郑剑锋, 马巍, 赵淑萍, 等. 重塑土室内制样技术对比研究[J]. 冰川冻土, 2008, 30(3): 494-500. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200803019.htm

    ZHENG Jian-feng, MA Wei, ZHAO Shu-ping, et al. Development of the specimen-preparing technique for remolded soil samples[J]. Journal of Glaciology and Geocryology, 2008, 30(3): 494-500. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200803019.htm

    [31] 普通混凝土力学性能试验方法标准:GB/T 50081—2002[S]. 2002.

    Standard for Test Method of Mechanical Mechanical Properties on Ordinary Concrete: GB/T 50081—2002[S]. 2002. (in Chinese)

    [32]

    LIU J, LÜ P, CUI Y, et al. Experimental study on direct shear behavior of frozen soil-concrete interface[J]. Cold Regions Science and Technology, 2014, 104: 1-6.

    [33]

    VOLOKHOV S S. Effect of freezing conditions on the shear strength of soils frozen together with materials[J]. Soil Mechanics and Foundation Engineering, 2003, 40(6): 233-238.

    [34]

    BAKER T H W. Strain rate effect on the compressive strength of frozen sand[J]. Engineering Geology, 1979, 13(1/2/3/4): 223-231.

  • 期刊类型引用(2)

    1. 张远庆,陈勇,王世梅,王力. 岸坡渗流潜蚀模型试验系统变革研究. 三峡大学学报(自然科学版). 2025(02): 48-54 . 百度学术
    2. 何健健,蒋希豪,汪玉冰. 离心模型试验中温度及孔隙率对砂土渗透系数的影响研究(英文). Journal of Zhejiang University-Science A(Applied Physics & Engineering). 2025(03): 177-194 . 百度学术

    其他类型引用(1)

图(5)  /  表(4)
计量
  • 文章访问数:  440
  • HTML全文浏览量:  26
  • PDF下载量:  316
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-04-01
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-01-31

目录

/

返回文章
返回