Back analysis of dynamic parameters of high earth-rock dam materials under weak earthquakes
-
摘要: 通过传递函数结合黏弹性人工边界模型实现了三维河谷地形下地震动的输入问题,不仅考虑了坝基相互作用和地基辐射阻尼的影响,而且较好地考虑了河谷地形的影响,保证了大坝动力计算的地震动输入的合理性。然后利用多输出支持向量机代替有限元计算,需要的样本数量相对较小,并且避免了传统单一支持向量机容易忽略监测数据间的相关性的问题,精度满足计算的要求,最后利用粒子群优化算法对反演参数进行优化选择。对糯扎渡心墙堆石坝动力参数的反演结果表明,测点加速度与实测值吻合较好。说明提出的方法是可行的,适用于弱震情况,可以为缺乏强震或震害资料的坝体动参数反演提供依据。最大动剪切模量系数C值与三轴试验方法和缩尺效应等有关,反演得到的堆石料最大剪切模量系数C值比室内动三轴试验值偏大,可以为室内试验值修正提供参考;并且由于受到上游蓄水的原因,反演得到上游堆石料最大动剪模量系数C值又比下游堆石料小40%左右,工程应用时室内试验值建议予以适当的修正。Abstract: In the case of weak earthquakes, a back analysis model considering interaction and radiation damping effects is proposed for dynamic parameters of earth-rock dams. In the model, the viscous-elastic artificial boundary combined with transfer function is used for achieving the wave motion input of valley topography, and the multiple output support vector machine (MSVM) and particle swarm optimization (PSO) are adopted. Using PSO to optimize the dynamic parameters of the dam can effectively get the optimal combination of parameters. The trained MSVM used to describe the mapping relationship between the model parameters and the acceleration reduces computing time of parametric inversion, avoiding the problem that the traditional single support vector machines easily ignore the correlation between monitoring data. The inversion results of Nuzhadu dam show that the calculated settlements agree well with the measured data. The proposed model is feasible in back-analysis of dynamic parameters of earth-rock dams. The study shows that the dynamic shear modulus coefficient C of the dam materials obtained from the indoor dynamic triaxial tests is small and should be revised.
-
Keywords:
- weak earthquake /
- dynamic parameter /
- back analysis /
- viscous-elastic boundary /
- transfer function /
- MSVM /
- PSO
-
-
表 1 动力参数反演结果
Table 1 Back-analysis results of dynamic parameters
动力参数 心墙料 坝料分区 上游堆石料Ⅰ 上游堆石料Ⅱ 下游堆石料Ⅰ 下游堆石料Ⅱ 系数C 反演值 2661 2694 2300 4650 3555 室内试验值 1754 2455 2216 2455 2216 指数n 反演值 0.412 0.565 0.440 0.544 0.651 室内试验值 0.451 0.600 0.609 0.600 0.609 表 2 坝体加速度放大倍数计算值与实测值对比
Table 2 Measured and calculated acceleration amplifications
方位 T2 T6 T7 计算 实测 计算 实测 计算 实测 顺河向 3.48 3.36 1.53 2.06 1.78 2.03 竖向 2.93 3.18 2.45 2.57 1.59 1.53 横河向 2.12 1.66 1.83 1.17 2.47 1.74 -
[1] FENG Z, TSAI P H, LI J N. Numerical earthquake response analysis of the Liyutan earth dam in Taiwan[J]. Natural Hazards and Earth System Science, 2010, 10(6): 1269-1280. doi: 10.5194/nhess-10-1269-2010
[2] CHARATPANGOON B, KIYONO J, FURUKAWA A, et al. Dynamic analysis of earth dam damaged by the 2011 Off the Pacific Coast of Tohoku Earthquake[J]. Soil Dynamics and Earthquake Engineering, 2014, 64: 50-62. doi: 10.1016/j.soildyn.2014.05.002
[3] 孔宪京, 周扬, 邹德高, 等. 汶川地震紫坪铺面板堆石坝地震波输入研究[J]. 岩土力学, 2012, 33(7): 2110-2116. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201207030.htm KONG Xian-jing, ZHOU Yang, ZOU De-gao, et al. Study of seismic wave input of Zipingpu concrete face rockfill dam during Wenchuan earthquake[J]. Rock and Soil Mechanics, 2012, 33(7): 2110-2116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201207030.htm
[4] 孔宪京, 周扬, 邹德高, 等. 汶川地震余震记录及紫坪铺面板堆石坝余震反应研究[J]. 岩土工程学报, 2011, 33(5): 673-678. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105003.htm KONG Xian-jing, ZHOU Yang, ZOU De-gao, et al. Aftershock records of Wenchuan Earthquake and seismic response of Zipingpu Concrete Face Rock-fill Dam[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 673-678. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105003.htm
[5] 徐奴文, 梁正召, 唐春安, 等. 基于微震监测的岩质边坡稳定性三维反馈分析[J]. 岩石力学与工程学报, 2014, 33(增刊1): 3093-3104. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1071.htm XU Nu-wen, LIANG Zheng-zhao, TANG Chun-an, et al. Three-Dimensional feedback analysis of rock slope stability based on microseismic monitoring[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3093-3104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1071.htm
[6] SEVIM B, ALTUNIŞIK A C, BAYRAKTAR A. Earthquake behavior of berke arch dam using ambient vibration test results[J]. Journal of Performance of Constructed Facilities, 2012, 26(6): 780-792. doi: 10.1061/(ASCE)CF.1943-5509.0000264
[7] KARIMI I, KHAJI N, AHMADI M T, et al. System identification of concrete gravity dams using artificial neural networks based on a hybrid finite element-boundary element approach[J]. Engineering Structures, 2010, 32(11): 3583-3591. doi: 10.1016/j.engstruct.2010.08.002
[8] 康飞, 李俊杰, 许青. 混合蜂群算法及其在混凝土坝动力材料参数反演中的应用[J]. 水利学报, 2009, 40(6): 736-742. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200906014.htm KANG Fei, LI Jun-jie, XU Qing. Hybrid simplex artificial bee colony algorithm and its application inmaterial dynamic parameter back analysis of concrete[J]. Journal of Hydraulic Engineering, 2009, 40(6): 736-742. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200906014.htm
[9] 冯新, 周晶, 范颖芳. 基于模态观测的混凝土坝反演分析[J]. 水利学报, 2004, 35(2): 101-105. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200402017.htm FENG Xin, ZHOU Jing, FAN Ying-fang. Inverse analysis of concrete dam with modal measurements[J]. Journal of Hydraulic Engineering, 2004, 35(2): 101-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200402017.htm
[10] 周伟, 徐干, 常晓林, 等. 堆石体流变本构模型参数的智能反演[J]. 水利学报, 2007, 38(4): 389-394. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200704001.htm ZHOU Wei, XU Gan, CHANG Xiao-lin, et al. Intelligent back analysis on parameters of creep constitutive model[J]. Journal of Hydraulic Engineering, 2007, 38(4): 389-394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200704001.htm
[11] 马刚, 常晓林, 周伟, 等. 高堆石坝瞬变-流变参数三维全过程联合反演方法及变形预测[J]. 岩土力学, 2012, 33(6): 1889-1895. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201206046.htm MA Gang, CHANG Xiao-lin, ZHOU Wei, et al. Integrated inversion of instantaneous and rheological parameters and deformation prediction of high rockfill dam[J]. Rock and Soil Mechanics, 2012, 33(6): 1889-1895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201206046.htm
[12] 常晓林, 喻胜春, 马刚, 等. 基于粒子迁徙的粒群优化算法及其在岩土工程中的应用[J]. 岩土力学, 2011, 32(4): 1077-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201104019.htm CHANG Xiao-lin, YU Sheng-chun, MA Gang, et al. Particle swarm optimization based on particle migration and its application to geotechnical engineering[J]. Rock and Soil Mechanics, 2011, 32(4): 1077-1082. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201104019.htm
[13] 迟世春, 朱叶. 面板堆石坝瞬时变形和流变变形参数的联合反演[J]. 水利学报, 2016, 47(1): 18-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201601004.htm CHI Shi-chun, ZHU Ye. Back-analysis of instantaneous and rheological deformation parameters for concrete faced rockfill dams[J]. Journal of Hydraulic Engineering, 2016, 47(1): 18-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201601004.htm
[14] 朱晟, 张美英, 戴会超. 土石坝沥青混凝土心墙力学参数反演分析[J]. 岩土力学, 2009, 30(3): 635-639. ZHU Sheng, ZHANG Mei-ying, DAI Hui-chao. Back analysis of mechanical parameters for asphalt-concrete core earth-rock dam[J]. Rock and Soil Mechanics, 2009, 30(3): 635-639. (in Chinese)
[15] 朱晟, 杨鸽, 周建平, 等. “5·12”汶川地震紫坪铺面板堆石坝静动力初步反演研究[J]. 四川大学学报(工程科学版), 2010, 42(5): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201005017.htm ZHU Sheng, YANG Ge, ZHOU Jian-ping, et al. Back analysis on static and dynamic characteristics of Zipingpu CFRD under“5·12”Wenchuan Earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(5): 113-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201005017.htm
[16] 汪旭, 康飞, 李俊杰. 土石坝地震永久变形参数反演方法研究[J]. 岩土力学, 2014, 35(1): 279-286. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401042.htm WANG Xu, KANG Fei, LI Jun-jie. Back analysis of earthquake- induced permanent deformation parameters of earth-rock dams[J]. Rock and Soil Mechanics, 2014, 35(1): 279-286. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401042.htm
[17] 刘振平, 迟世春, 赵显波, 等. 鲤鱼潭大坝坝料动力参数反演[J]. 岩土工程学报, 2015, 37(4): 761-768. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504029.htm LIU Zhen-ping, CHI Shi-chun, ZHAO Xian-bo, et al. Back analysis of dynamic parameters of Liyutan dam materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 761-768. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504029.htm
[18] ZHANG J M, YANG Z Y, GAO X Z, et al. Geotechnical aspects and seismic damage of the 156-m-high Zipingpu concrete-faced rockfill dam following the Ms 8.0 Wenchuan earthquake[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 145-156.
[19] 孔宪京, 邹德高, 刘京茂. 高土石坝抗震安全评价与抗震措施研究进展[J]. 水力发电学报, 2016, 35(7): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201607001.htm KONG Xian-jing, ZOU De-gao, LIU Jing-mao. Developments in seismic safety evaluation methods and aseismic measures for high rockfill dams[J]. Journal of Hydroelectric Engineering, 2016, 35(7): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201607001.htm
[20] 陈厚群. 坝址地震动输入机制探讨[J]. 水利学报, 2006, 37(12): 1417-1423. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200612004.htm CHEN Hou-qun. Discussion on seismic input mechanism at dam site[J]. Journal of Hydraulic Engineering, 2006, 37(12): 1417-1423. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200612004.htm
[21] 周国良, 李小军, 侯春林, 等. SV波入射下河谷地形地震动分布特征分析[J]. 岩土力学, 2012, 33(4): 1161-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201204030.htm ZHOU Guo-liang, LI Xiao-jun, HOU Chun-lin, et al. Characteristic analysis of ground motions of canyon topography under incident SV seismic waves[J]. Rock and Soil Mechanics, 2012, 33(4): 1161-1166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201204030.htm
[22] 李平, 薄景山, 李孝波, 等. 安宁河河谷及邛海地区土层场地对地震动的放大作用[J]. 岩土工程学报, 2016, 38(2): 362-369. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602026.htm LI Ping, BO Jing-shan, LI Xiao-bo, et al. Amplification effect of soil sites on ground motion in Anning River valley and Qionghai Lake area[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 362-369. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602026.htm
[23] 朱亚林, 孔宪京, 邹德高, 等. 河谷地形对高土石坝动力反应特性影响的分析[J]. 岩土工程学报, 2012, 34(9): 1590-1597. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201209008.htm ZHU Ya-lin, KONG Xian-jing, ZOU De-gao, et al. Effect of valley topography on dynamic response properties of high earth-rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1590-1597. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201209008.htm
[24] 盛谦, 崔臻, 刘加进, 等. 传递函数在地下工程地震响应研究中的应用[J]. 岩土力学, 2012, 33(8): 2253-2258. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201208005.htm SHENG Qian, CUI Zhen, LIU Jia-jin, et al. Application study of transfer function for seismic response analysis of underground engineering[J]. Rock and Soil Mechanics, 2012, 33(8): 2253-2258. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201208005.htm
[25] 崔臻, 盛谦, 宋艳华, 等. 地下洞室群随机地震响应研究中传递函数的应用探讨[J]. 岩土力学, 2012, 33(12): 3760-3766. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201212038.htm CUI Zhen, SHENG Qian, SONG Yan-hua, et al. Application of transfer function to stochastic seismic response analysis of underground caverns[J]. Rock and Soil Mechanics, 2012, 33(12): 3760-3766. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201212038.htm
[26] 蒋良潍, 姚令侃, 吴伟, 等. 传递函数分析在边坡振动台模型试验的应用探讨[J]. 岩土力学, 2010, 31(5): 1368-1374. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201005007.htm JIANG Liang-wei, YAO Ling-kan, WU Wei. Transfer function analysis of earthquake simulation shaking table model test of side slopes[J]. Rock and Soil Mechanics, 2010, 31(5): 1368-1374. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201005007.htm
[27] 袁艳玲, 郭琴琴, 周正军, 等. 考虑参数相关的高心墙堆石坝材料参数反分析[J]. 岩土力学, 2017, 38(增刊1): 463-470. YUAN Yan-ling, GUO Qin-qin, ZHOU Zheng-jun, et al. Back analysis of material parameters of high core rockfill dam considering parameters correlation[J]. Rock and Soil Mechanics, 2017, 38(S1): 463-470. (in Chinese)
[28] 李波, 徐宝松, 武金坤, 等. 基于最小二乘支持向量机的大坝力学参数反演[J]. 岩土工程学报, 2008, 30(11): 1722-1725. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200811028.htm LI Bo, XU Bao-song, WU Jin-kun, et al. Back analysis of dam mechanical parameters based on least squares support vector machine[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1722-1725. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200811028.htm
[29] TUIA D, VERRELST J, ALONSO L, et al. Multioutput support vector regression for remote sensing biophysical parameter estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 804-808.
[30] SEED H B, IDRISS I M. Influence of soil conditions on ground motions during earthquakes[J]. Journal of the Soil Mechanics & Foundations Division, 1969, 95(1): 99-138.
[31] ZHANG C H, PAN J W, WANG J T. Influence of seismic input mechanisms and radiation damping on arch dam response[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(9): 1282-1293.
[32] 刘晶波, 谷音, 杜义欣. 一致黏弹性人工边界及黏弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070-1075. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT202209012.htm LIU Jing-bo, GU Yin, DU Yi-xin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070-1075. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT202209012.htm
[33] 何建涛, 马怀发, 张伯艳, 等. 黏弹性人工边界地震动输入方法及实现[J]. 水利学报, 2010, 41(8): 960-969. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201008014.htm HE Jian-tao, MA Huai-fa, ZHANG Bo-yan, et al. Method and realization of seismic motion input of viscous-spring boundary[J]. Journal of Hydraulic Engineering, 2010, 41(8): 960-969. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201008014.htm
[34] 邬凯, 盛谦, 梅松华, 等. PSO-LSSVM模型在位移反分析中的应用[J]. 岩土力学, 2009, 30(4): 1109-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200904056.htm WU Kai, SHENG Qian, MEI Song-hua. A model of PSO-LSSVM and its application to displacement back analysis[J]. Rock and Soil Mechanics, 2009, 30(4): 1109-1114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200904056.htm
[35] 高尚, 杨静宇. 群智能算法及其应用[M]. 北京: 中国水利水电出版社, 2006. GAO Shang, YANG Jing-yu. Swarm Intelligence Algorithms and Applications[M]. Beijing: China Water Power Press, 2006. (in Chinese)
[36] 胡再强, 李宏儒, 苏永江. 岗曲河混凝土面板堆石坝三维静力应力变形分析[J]. 岩土力学, 2009, 30(增刊2): 312-317. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2068.htm HU Zai-qiang, LI Hong-ru, SU Yong-qiang. 3-D static stress and displacement analysis of Gangqu river concrete faced rockfill dam[J]. Rock and Soil Mechanics, 2009, 30(S2): 312-317. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2068.htm
-
期刊类型引用(13)
1. 满轲,柳宗旭,商艳,宋志飞,刘晓丽,苏宝. 基于灰色关联分析下深度学习盾构姿态预测模型. 工程科学与技术. 2025(02): 203-213 . 百度学术
2. 满轲,曹子祥,刘晓丽,宋志飞,柳宗旭,刘汭琳,武立文. 地质突变条件下基于组合模型的围岩等级和TBM掘进参数预测. 河海大学学报(自然科学版). 2024(01): 55-62 . 百度学术
3. 邓志兴,谢康,李泰灃,苏谦,韩征,肖宪普. 基于机器学习的高铁边坡位移预测不确定性度量与应用. 中国铁道科学. 2024(01): 56-67 . 百度学术
4. 姜浩,郑亚强,金治军,马庆,董强,郑德焰,林峰,赵炳武. 基于ANN算法的钢结构安装工程质量状态评价. 化工管理. 2024(06): 102-109 . 百度学术
5. 郝晶晶,段鹏鑫,陈雨欣,段晓晨. 基于IGWO-SVR的地铁车站投资预测. 铁道学报. 2024(05): 179-188 . 百度学术
6. 张洁. 新疆超长隧洞TBM智能掘进施工方法研究. 黑龙江水利科技. 2024(08): 123-125 . 百度学术
7. 林平,李有鹏,谭彬. 基于Bootstrap方法和LSSVM模型的滑坡位移区间预测. 测绘与空间地理信息. 2024(09): 48-51+56 . 百度学术
8. 张琦,甘超,曹卫华. 大洋钻探过程钻速在线区间预测方法——以微型钻探船室内模拟实验为例. 钻探工程. 2024(05): 45-52 . 百度学术
9. 赵高峰,姜宝元,芮福鑫,马洪素,李洁勇,赵晓豹,龚秋明. 基于数值仿真的复杂岩体TBM掘进性能评估模型. 中南大学学报(自然科学版). 2023(03): 984-997 . 百度学术
10. 常建涛,乔子萱,孔宪光,杨胜康,罗才文. 多维非线性特征重构与融合的复杂产品工期预测方法. 机械工程学报. 2023(06): 294-308 . 百度学术
11. 禹海涛,朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析. 隧道与地下工程灾害防治. 2023(03): 19-26 . 百度学术
12. 彭继慎,郝茗,宋立业,李希桐. 基于TSSA-SVR算法的TBM掘进速度预测. 辽宁工程技术大学学报(自然科学版). 2023(05): 634-640 . 百度学术
13. 闫静,张雪英,李凤莲,陈桂军,黄丽霞. 结合栈式监督AE与可变加权ELM的回归预测模型. 计算机工程. 2022(08): 62-69+76 . 百度学术
其他类型引用(11)