Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

软土地层管幕群顶进的相互作用及闭合姿态的实测分析

何君佐, 廖少明, 陈立生, 程池浩

何君佐, 廖少明, 陈立生, 程池浩. 软土地层管幕群顶进的相互作用及闭合姿态的实测分析[J]. 岩土工程学报, 2020, 42(2): 279-288. DOI: 10.11779/CJGE202002009
引用本文: 何君佐, 廖少明, 陈立生, 程池浩. 软土地层管幕群顶进的相互作用及闭合姿态的实测分析[J]. 岩土工程学报, 2020, 42(2): 279-288. DOI: 10.11779/CJGE202002009
HE Jun-zuo, LIAO Shao-ming, CHEN Li-sheng, CHENG Chi-hao. Field investigations on interaction between jacking pipes and closure of pipe roofs in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 279-288. DOI: 10.11779/CJGE202002009
Citation: HE Jun-zuo, LIAO Shao-ming, CHEN Li-sheng, CHENG Chi-hao. Field investigations on interaction between jacking pipes and closure of pipe roofs in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 279-288. DOI: 10.11779/CJGE202002009

软土地层管幕群顶进的相互作用及闭合姿态的实测分析  English Version

详细信息
    作者简介:

    何君佐(1995— ),男,博士,主要从事地下工程施工控制等方面的科研工作。E-mail:1810755@tongji.edu.cn

    通讯作者:

    廖少明, E-mail:liaosm@126.com

  • 中图分类号: TU447

Field investigations on interaction between jacking pipes and closure of pipe roofs in soft ground

  • 摘要: 管幕群在地下穿越工程中对保护穿越对象发挥着关键作用。为了施工形成严格封闭的管幕群,需要每根顶管进行高精度的顶进施工,而众多相邻顶管顶进的相互作用极为复杂,导致每根顶管的姿态变化及管幕群最终闭合误差呈现不确定性。依托于某大型“管幕-箱涵”工法顶进穿越中环线工程项目,采用实时监测手段对管幕群顶进过程中各钢管的姿态与变形进行了记录,在此基础上分析研究了各类钢管在顶进过程中的相互作用以及管幕群贯通闭合后的姿态与变形规律。结果表明:①顶管之间的相互作用体现为先施工顶管(先管)对后顶进钢管(后管)姿态的约束、导向作用,相对偏差大致控制在4 cm以内;②受到钢管纵向刚度的影响,70%钢管姿态纠偏明显滞后于机头姿态变化,前期偏差累积较大,在末端顶管刚度随长度增加而减少,在强行纠偏下,顶管偏差变化幅度较大;③管幕群的闭合姿态在始发端及加固区段均保持良好;在中段各钢管出现明显变化,甚至部分钢管间拉开较大;在接收端,大部分钢管偏移相对减小。
    Abstract: The pipe roofs play a key role in protecting the passing objects in underground crossing projects. In order to construct a strictly closed pipe roof, high jacking precision of each pipe is required. However, the jacking interaction of various adjacent pipes is extremely complicated, which brings uncertainty to the attitude change of each pipe jacking and the final closure error of the pipe roof. This study relies on a certain project crossing a middle ring line by the large-scale 'pipe roof-box culvert’ method and uses the real-time monitoring approach to record the attitude and deformation of each steel pipe during the jacking process of the pipe roof. Based on the measured data, the interaction of various pipes in the process of jacking as well as the attitude and deformation of the closed pipe roof is analyzed. The results show that: (1) The interaction between the pipes is reflected by the constraint and guiding effects of the previous pipe jacking (anterior pipe) on the attitude of the rear jacking pipe (posterior pipe), and the relative deviation is generally controlled within 4 cm. (2) Affected by the longitudinal stiffness of the steel pipe, the attitude correction of 70% pipes lags behind the machine head which results in relatively large accumulative deviation at the previous stage, but with the decrease of the longitudinal stiffness, the attitude of the pipe changes sharply at the receiving terminal under hard correcting. (3) The attitude of closed pipe roof is well maintained at the originating terminal and the reinforced zone. An obvious change occurs in the middle section, and some pipes even have a large distance among them. Finally, at the receiving terminal, the deviation of most pipes is relatively reduced.
  • 图  1   管幕-箱涵下穿工程示意图

    Figure  1.   Underground crossing project of pipe roof-box culvert

    图  2   管幕-箱涵施工段穿越中环线断面图

    Figure  2.   Cross section of pipe roof-box culvert

    图  3   各类型管幕钢管示意图

    Figure  3.   Types of different pipes

    图  4   管幕穿越地层纵剖面图

    Figure  4.   Longitudinal section of pipe roof-culvert jacking through strata

    图  5   顶管偏差方向规定

    Figure  5.   Direction rules for deviation of jacking pipe

    图  6   后管与先管相对位置关系

    Figure  6.   Position of posterior pipe relative to anterior pipe

    图  7   先后管作用关系

    Figure  7.   Relationships of interaction between anterior pipe and posterior pipe

    图  8   约束效应示意图

    Figure  8.   Schematic graph of constraint effects

    图  9   刚度效应示意图

    Figure  9.   Schematic graph of stiffness effects

    图  10   滞后效应示意图

    Figure  10.   Schematic graph of lag effects

    图  11   基准管(D13)与水平承插管(D14)姿态对比图

    Figure  11.   Comparison of attitudes of datum pipe (D13) and horizontal socket pipe (D14)

    图  12   水平承插管ΔX/ΔXΔY/ΔY直方图

    Figure  12.   Histograms of ΔX/ΔX and ΔY/ΔY of horizontal socket pipes

    图  13   水平承插管相对偏差统计图

    Figure  13.   Statistical graphs of relative deviation of horizontal socket pipes

    图  14   基准管(Z8)与竖直承插管(Z7)姿态对比图

    Figure  14.   Attitude comparisons of datum pipe (Z8) and vertical socket pipe (Z7)

    图  15   竖直承插管ΔX/ΔXΔY/ΔY直方图

    Figure  15.   Histograms of ΔX/ΔX and ΔY/ΔY of vertical socket pipes

    图  16   竖直承插管相对偏差统计图

    Figure  16.   Statistical graphs of relative deviation of vertical socket pipes

    图  17   始发端管幕群闭合姿态偏差(放大10倍)及偏向统计

    Figure  17.   Attitude deviations (magnified 10 times) and statistics of deviation directions of closed pipe roof at originating terminal

    图  18   出加固区管幕群闭合姿态偏差(放大10倍)及偏向统计

    Figure  18.   Attitude deviations (magnified 10 times) and statistics of deviation directions of closed pipe roof outside reinforced zone

    图  19   中部管幕群闭合姿态偏差(放大10倍)及偏向统计

    Figure  19.   Attitude deviations (magnified 10 times) and statistics of deviation directions of closed pipe roof in middle

    图  20   接收端管幕群闭合姿态偏差(放大10倍)及偏向统计

    Figure  20.   Attitude deviations (magnified 10 times) and statistics of deviation directions of closed pipe roof at receiving terminal

    表  1   地层参数

    Table  1   Parameters of strata

    层序地层名称重度/(kN·m-3)孔隙比含水率/%压缩模量/MPa侧压力系数黏聚力/kPa内摩擦角/(°)
    淤泥质粉质黏土17.61.14440.63.090.481218.0
    淤泥质黏土16.81.40650.02.200.591111.5
    下载: 导出CSV
  • [1] 陈立生, 程池浩, 葛金科, 等. 管幕箱涵法隧道在软土地层中的应用技术研究[J]. 中国市政工程, 2016(增刊1): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSZ2016S1007.htm

    CHEN Li-sheng, CHENG Chi-hao, GE Jin-ke, et al. Study on application technology of pipe roof-box culvert method tunnel in soft soil stratum[J]. China Munical Engineering, 2016(S1): 12-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSZ2016S1007.htm

    [2]

    LIAO S M, CHENG C H, CHEN L S. The planning and construction of a large underpass crossing urban expressway in Shanghai: an exemplary solution to the traffic congestions at dead end roads[J]. Tunnelling and Underground Space Technology, 2018, 81: 367-381. doi: 10.1016/j.tust.2018.07.010

    [3] 魏纲. 顶管工程土与结构的性状及理论研究[D]. 杭州: 浙江大学, 2005.

    WEI Gang. Theoretical Study on Properties of Soil and Structure During Pipe Jacking Construction[D]. Hangzhou: Zhejiang University, 2005. (in Chinese)

    [4]

    BAE G J, SHIN H S, SICILIA C, et al. Homogenization framework for three-dimensional elastoplastic finite element analysis of a grouted pipe-roofing reinforcement method for tunneling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(1): 1-24. doi: 10.1002/nag.402

    [5]

    SHI Y F, FU J Y, YANG J S, et al. Performance evaluation of long pipe roof for tunneling below existing highway based on field tests and numerical analysis: case study. international[J]. Journal of Geomechanics ASCE, 2017(9): 1-12.

    [6] 杨仙, 张可能, 李钟, 等. 管幕预筑法中钢管顶进对地面沉降的影响[J]. 沈阳工业大学学报, 2012(4): 469-473. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGY201204020.htm

    YANG Xian, ZHANG Ke-neng, LI Zhong, et al. Influence of steel pipe jacking on earth surface settlement in pipe roof pre-construction method[J]. Journal of Shenyang University of Technology, 2012(4): 469-473. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGY201204020.htm

    [7]

    YANG X, LI Y S. Research of surface settlement for a single arch long-span subway station using the pipe-roof pre-construction method[J]. Tunnelling and Underground Space Technology, 2018, 72: 210-217. doi: 10.1016/j.tust.2017.11.024

    [8] 杨仙. 管幕预筑法中密排大直径钢管群顶进研究[D]. 长沙: 中南大学, 2012.

    YANG Xian. Research of Large Diameter Jacking-Pipes with Small Space in Pipe-Roof Pre-Construction Method[D]. Changsha: Central South University, 2012. (in Chinese)

    [9] 孙钧, 虞兴福, 孙旻, 等. 超大型“管幕-箱涵”顶进施工土体变形的分析与预测[J]. 岩土力学, 2006, 27(7): 1021-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200607000.htm

    SUN Jun, YU Xing-fu, SUN Min, et al. Analysis and prediction on soft ground deformation of a super-large shallow buried “pipe-roofing and box-culvert” jacking project under construction[J]. Rock and Soil Mechanics, 2006, 27(7): 1021-1027. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200607000.htm

    [10] 苏荣军, 陈立生. 软土地层浅覆土下钢管幕顶进沉降分析[J]. 隧道建设, 2018, 38(7): 1236-1242. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201807028.htm

    SU Rong-jun, CHEN Li-sheng. Settlement analysis of steel piep roof jacking in ultra-shallow covered soft ground[J]. Tunnel Construction, 2018, 38(7): 1236-1242. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201807028.htm

    [11] 冼家驹, 张建龙. 管幕施工引起的地面变形计算方法综述[J]. 土工基础, 2016(6): 672-676. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201606014.htm

    XIAN Jia-ju, ZHANG Jian-long. Review of methods predicting tunnel excavation induced ground subsidence[J]. Soil Engineering and Foundation, 2016(6): 672-676. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201606014.htm

    [12] 中航勘察设计研究院有限公司. 田林路下穿中环线道路新建工程岩土工程勘察报告[R]. 北京: 中航勘察设计研究院有限公司, 2016.

    China Aviation Institute of Geotechnical Engineering Co., Ltd.. Geotechnical investigation report on the new construction project of Tianlin Road underpassing the Central Line Road[R]. Beijing: China Aviation Institute of Geotechnical engineering Co., Ltd., 2016. (in Chinese)

图(20)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-01-31

目录

    /

    返回文章
    返回