• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

利用微生物技术改良泥炭土工程性质试验研究

桂跃, 吴承坤, 刘颖伸, 高玉峰, 何稼

桂跃, 吴承坤, 刘颖伸, 高玉峰, 何稼. 利用微生物技术改良泥炭土工程性质试验研究[J]. 岩土工程学报, 2020, 42(2): 269-278. DOI: 10.11779/CJGE202002008
引用本文: 桂跃, 吴承坤, 刘颖伸, 高玉峰, 何稼. 利用微生物技术改良泥炭土工程性质试验研究[J]. 岩土工程学报, 2020, 42(2): 269-278. DOI: 10.11779/CJGE202002008
GUI Yue, WU Cheng-kun, LIU Ying-shen, GAO Yu-feng, HE Jia. Improving engineering properties of peaty soil by biogeotechnology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 269-278. DOI: 10.11779/CJGE202002008
Citation: GUI Yue, WU Cheng-kun, LIU Ying-shen, GAO Yu-feng, HE Jia. Improving engineering properties of peaty soil by biogeotechnology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 269-278. DOI: 10.11779/CJGE202002008

利用微生物技术改良泥炭土工程性质试验研究  English Version

基金项目: 

国家自然科学基金项目 51568030

国家自然科学基金项目 51768027

国家自然科学基金项目 41662021

岩土力学与堤坝工程教育部重点实验室开放基金项目 GH201401

详细信息
    作者简介:

    桂跃(1982— ),江西进贤人,博士,副教授,主要从事软黏土力学及基坑、边坡及地下工程等方面教学与科研工作。E-mail:gydrgui@kmust.edu.cn

  • 中图分类号: TU43

Improving engineering properties of peaty soil by biogeotechnology

  • 摘要: 提出利用微生物技术制备原生菌高浓度菌液,用来加快土中有机质分解速率,实现在较短时间内显著降低有机质含量、改善土的工程性质的目的。为验证其可行性,从昆明市2个场地采取了泥炭土样,研发了2套模型装置,分别模拟厌氧、好氧环境下泥炭土有机质分解过程,并测试分析了分解后泥炭土的烧失量、界限含水率及一维固结蠕变特性。试验结果表明:厌氧环境下,菌液浸泡的泥炭土生物气产量比纯水浸泡的有大幅度提高,其产气动力学特征符合修正Gompertz模型。好氧环境下,分解30 d左右时,2个场地泥炭土烧失量分别减少了10.3%和15.6%,减少量比厌氧环境下的大。界限含水率试验表明,泥炭土液限随微生物分解反应时间的增长有所降低,而塑限变化幅度不大。一维固结蠕变试验表明,有机质分解后的泥炭土次固结系数下降,分解时间越长,次固结系数下降越显著。对新技术的特点进行了分析,并对其理论及应用研究进行了展望;该技术有望发展为一项生态友好型的泥炭土地基新型处理方法,改良泥炭土有望成为微生物岩土技术一个潜在应用领域。
    Abstract: It is suggested that the microbial enrichment technology should be used to increase the number and activity of primary bacteria in peaty soil so as to accelerate the degradation rate of organic matters in soil and achieve the purpose of significantly reducing the content of organic matters and improving the engineering properties of soil in a short time. In order to verify its feasibility, peaty soil samples are taken from two sites in Kunming City, and two sets of model devices are developed to simulate the degradation process of organic matters of peaty soil under anaerobic and aerobic environments, respectively. The combustion loss, limit moisture content and one-dimensional consolidation deformation characteristics of peaty soil after being decomposed are tested. The results show that under the anaerobic environment, the biogas yield of peaty soil soaked in the enriched bacteria solution is significantly higher than that of pure water immersion, and its gas production kinetic characteristics are in line with the modified Gompertz model. Under the aerobic environment, when the microbial degradation lasts for about 30 days, the burning loss of peaty soil in the two sites decreases by 10.28% and 15.58%, respectively, which is larger than that under the anaerobic environment. The experimental results show that the liquid limit of peaty soil degraded by microorganism decreases with the increase of the reaction time, and the plastic limit does not change much. The one-dimensional consolidation tests show that the secondary consolidation coefficient of peat soil after degration of organic matters decreases, and the longer the degration time, the more significant the reduction of the secondary consolidation coefficient. The characteristics of the new technology are analyzed, and its theory and application are prospected. This technique is expected to be an ecological friendly new treatment method for peat soil foundation, and improving peat soil foundation is expected to have a potential application field of biogeotechnology.
  • 致谢: 本文的试验方案设计得到了南京水利科学研究院谈叶飞博士的指导;文中微生物提取及培养等工作主要在江苏省疾病预防控制中心病原微生物研究所完成;还有部分工作是在昆明理工大学食品安全技术研究所程桂广博士、生命科学与技术学院陈伟博士的帮助下完成的,在此一并感谢!
  • 图  1   技术路线图

    Figure  1.   Technical roadmap

    图  2   昆明泥炭土

    Figure  2.   Samples of peaty soil from Kunming City

    图  3   涂布平板试验

    Figure  3.   Streak plate method

    图  4   高浓度菌液

    Figure  4.   High-concentration bacteria solution

    图  5   厌氧环境有机质分解模拟装置图(左)及生物气收集试管实物(右)

    Figure  5.   Schematic diagram of model devices for anaerobic environment organic matter degradation (left) and glass tube for biological gas collection (right)

    图  6   好氧环境有机质分解模拟装置图(左)及实物(右)

    Figure  6.   Schematic diagram of model devices for organic matter degradation in aerobic environment (left) and real object (right)

    图  7   累积生物气体积与反应时间的关系

    Figure  7.   Relationship between volume of accumulated biogas and reaction time

    图  8   烧失量与反应时间的关系

    Figure  8.   Relationship between ignition loss and reaction time

    图  9   界限含水率与反应时间的关系

    Figure  9.   Relationship between limit water content and reaction time

    图  10   界限含水率与有机质含量的关系

    Figure  10.   Relationship between limit water content and organic matter content

    图  11   e-lgt曲线与分解时长的关系

    Figure  11.   Relationship between time of degration and the e-lgt curve

    图  12   次固结系数与分解时间的关系

    Figure  12.   Relationship between secondary consolidation coefficient and reaction time of degration

    图  13   微生物技术改良泥炭土地基施工技术设计

    Figure  13.   Design of construction technology of improving peaty soil ground by biogeotechnology

    表  1   试样的物理性质指标

    Table  1   Physical parameters of peaty soil samples

    取样点取样深度/m颜色含水率w/%孔隙比e0重度γ/(kN·m-3)塑限wp/%液限wl/%烧失量wi/%残余纤维量wf/%pH值
     场地一8.0~8.5黑色215.34.611.9125.2189.348.1<1.06.5
    场地二1.2~1.8灰褐416.16.610.369.315.26.3
    下载: 导出CSV

    表  2   泥炭土中原生细菌数量

    Table  2   Number of aboriginal bacteria in peaty soil

    土样场地培养基类型稀释倍数平板菌落数/个土中细菌数量/(CFU·g-1)
    场地一葡萄糖肉汤100991.23×105
    LB肉汤100911.13×105
    场地二葡萄糖肉汤100871.08×105
    LB肉汤1001021.26×105
    下载: 导出CSV

    表  3   配制菌液的浓度

    Table  3   Concentration of bacterium solution after cultured

    土样 场地OD600吸光度值菌液浓度/(cells·mL-1)
    ABC均值
    场地一0.3600.3400.3190.3381.96×107
    场地二0.8330.6640.7350.7445.74×107
    下载: 导出CSV

    表  4   泥炭土分解产气的修正Gompertz模型拟合参数

    Table  4   Parameters fitted by modified Gompertz model for peaty soil degradation

    土样场地修正Gompertz模型参数
    P0/mLRmax/(mL·d-1)λ/dR2
    场地一53.29.211.40.98
    场地二82.81.30.70.92
    下载: 导出CSV

    表  5   纯水及废液中的溶氧量及pH值

    Table  5   Dissolved oxygen contents and pH values in pure water and waste solution

    反应时间t/d试验组溶氧量/(mg·L-1)pH值
    7纯水-15.267.00
    废液-12.935.98
    废液-23.805.85
    废液-33.245.72
    废液-43.915.82
    14纯水-25.227.00
    废液-54.405.68
    废液-64.025.67
    废液-73.915.69
    废液-84.215.76
    21纯水-34.106.68
    废液-93.815.67
    废液-103.925.78
    废液-113.875.46
    30纯水-44.167.73
    废液-124.605.70
    下载: 导出CSV
  • [1]

    WONG L S, HASHIM R, ALI F H. A review on hydraulic conductivity and compressibility of peat[J]. Journal of Applied Sciences, 2009, 9(18): 3207-3218. doi: 10.3923/jas.2009.3207.3218

    [2]

    HUAT B B K, KAZEMIAN S, PRASAD A, et al. State of an art review of peat: general perspective[J]. International Journal of Physical Sciences, 2011, 6(8): 1988-1996.

    [3] 黄昌勇, 徐建明. 土壤学[M]. 北京: 中国农业出版社, 2010.

    HUANG Chang-yong, XU Jian-ming. Soil Science[M]. Beijing: China Agriculture Press, 2010. (in Chinese)

    [4]

    HOBBS N B. Mire morphology and the properties and behaviour of some British and foreign peats[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1986, 19(1): 7-80. doi: 10.1144/GSL.QJEG.1986.019.01.02

    [5]

    MATTHIESN H. State of Preservation and Possible Settling of Cultural Layers below Bredsgarden and Bugaden Tenements[R]. Bryggen: Department of Conservation/National Museum of Denmark, 2004.

    [6]

    YAMAGUCHI H, OHIRA Y, KOGURE K. Volume change characteristics of undisturbed fibrous peat[J]. Soils and Foundations, 1985, 25(2): 119-134. doi: 10.3208/sandf1972.25.2_119

    [7]

    ZWANENBURG C. The influence of anisotropy on the consolidation behaviour of peat[D]. Delft: Delft University of Technology, 2005, 26(2): 229-250.

    [8] 桂跃, 付坚, 吴承坤. 高原湖相泥炭土渗透特性研究及机制分析[J]. 岩土力学, 2016, 37(11): 3197-3207. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611020.htm

    GUI Yue, FU Jian, WU Cheng-kun, et al. Hydraulic conductivity of lacustrine peaty soil in plateau areas and its mechanism analysis[J]. Rock and Soil Mechanics, 2016, 37(11): 3197-3207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611020.htm

    [9]

    MESRI G, STARK T D, AJLOUNI M A, et al. Secondary compression of peat with or without surcharging[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(5): 411-421. doi: 10.1061/(ASCE)1090-0241(1997)123:5(411)

    [10]

    SANTAGATA M, BOBET A, JOHNSTON C T, et al. One-dimensional compression behavior of a soil with high organic matter content[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(1): 1-13. doi: 10.1061/(ASCE)1090-0241(2008)134:1(1)

    [11]

    PRICE J S, CAGAMPAN J, KELLNER E. Assessment of peat compressibility: is there an easy way?[J]. Hydrological Processes, 2010, 19(17): 3469-3475.

    [12]

    ANDERSLAND O B, KHATTAK A S, AL-KHAFAJI A W N. Effect of organic material on soil shear strength[J]. Astm International, 1981, 740: 226-242.

    [13]

    YAMAGUCHI H, OHIRA Y, KOGURE K, et al. Undrained shear characteristics of normally consolidated peat under triaxial compression and extension conditions[J]. Soils and Foundations, 1985, 25(3): 1-18. doi: 10.3208/sandf1972.25.3_1

    [14]

    KELLY O. Compression and consolidation anisotropy of some soft soils[J]. Geotechnical and Geological Engineering, 2006, 24(6): 1715-1728. doi: 10.1007/s10706-005-5760-0

    [15]

    MITCHELL J K, SANTAMARINA J C. Biological considerations in geotechnical engineering[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1222-1233. doi: 10.1061/(ASCE)1090-0241(2005)131:10(1222)

    [16]

    O'KELLY B. Effect of decomposition on the compressibility of fibrous peat[J]. Geotechnical Special Publication, 2012, 8(4): 4329-4338.

    [17]

    WARDWELL R E, CHARLIE W A, DOXTADER K A. Test method for determining the potential for decomposition in organic soils[J]. Astm Special Technical Publication, 1983(820): 218-229.

    [18]

    PICHAN S, KELLY O. Stimulated decomposition in peat for engineering applications[J]. Ground Improvement, 2013, 166(GI3): 168-176.

    [19]

    ROBERT D W. Performance of fill that contains organic matter[J]. Journal of Performance of Constructed Facilities, 1994, 8(4): 264-273. doi: 10.1061/(ASCE)0887-3828(1994)8:4(264)

    [20]

    WARDWELL R E. Secondary Compression of Organic Soils with Fiber Degration[D]. Fort Collins: Colorado State University, 1980.

    [21]

    WARDWELL R E, CHARLIE A W, DOXTADER K A. Test Method for Determining the Potential for Decomposition in Organic Soils[M]. New York: Testing of Peats and Organic Soils. ASTM International, 1981.

    [22]

    BERRY P L. Application of consolidation theory for peat to the design of a reclamation scheme by preloading[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1983, 16(2): 103-112.

    [23]

    HUANG P, PATEL M, SANTAGATA M C, et al. Classifcation of Organic Soils[R]. West Lafayette: Purdue University, 2009.

    [24]

    KELLY O, BRENDAN C, PICHAN S P. Effects of decomposition on the compressibility of fibrous peat: a review[J]. Geomechanics and Geoengineering, 2013, 8(4): 286-296.

    [25]

    BOOK A A. Standard classification of peat samples by laboratory testing (D4427-84)[J]. ASTM, Section, 1985, 4: 883-884.

    [26] 桂跃, 吴承坤, 赵振兴, 等. 微生物分解有机质作用对泥炭土工程性质的影响[J/OL]. 岩土力学, doi: 10.16285/j.rsm.2019.1122.

    GUI Yue, WU Cheng-kun, ZHAO Zhen-xing, et al. Effects of microbial decomposing organic matter on engineering properties of peaty soil[J/OL]. Rock and Soil Mechanics, doi: 10.16285/j.rsm.2019.1122. (in Chinese)

    [27]

    KELLY O, BRENDAN C. Atterberg limits are not appropriate for peat soils[J]. Geotechnical Research, 2015, 2(3): 123-134.

    [28]

    BOOTH J, DAHL A. A note on the relationships between organic matter and some geotechnical properties of a marine sediment[J]. Marine Geotechnology, 1985, 6(3): 281-297.

    [29]

    HUAT B B K, ASADI A, KAZEMIAN S. Experimental investigation on geomechanical properties of tropical organic soils and peat[J]. American Journal of Engineering & Applied Sciences, 2009, 2(1): 184-188.

    [30] 陈怀满. 环境土壤学[M]. 北京: 科学出版社, 2010.

    CHEN Huai-man. Environmental Soil Science[M]. Beijing: Science Press, 2010. (in Chinese)

    [31] 何稼, 楚剑, 刘汉龙. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm

    HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm

    [32]

    MESRI G, AJLOUNI M. Engineering properties of fibrous peats[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(7): 850-866.

    [33]

    BURLAND J, CHAPMAN T, SKINNER H D, et al. ICE manual of geotechnical engineering[J]. Transport, 2012, 165(2): 79-79.

    [34]

    FRANZEN L G. Increased decomposition of subsurface peat in Swedish raised bogs: are temperate peatlands still net sinks of carbon?[J]. Mires and Peat, 2006(3): 1-16.

    [35]

    DREXLER J Z, FONTAINE C S D, DEVEREL S J. The legacy of wetland drainage on the remaining peat in the Sacramento-San Joaquin Delta, California, USA[J]. Wetlands, 2009, 29(1): 372-386.

图(13)  /  表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-31
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-01-31

目录

    /

    返回文章
    返回