• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

环境湿度与温度对压实膨胀土裂隙发育影响试验研究

刘观仕, 陈永贵, 曾宪云, 张贵保

刘观仕, 陈永贵, 曾宪云, 张贵保. 环境湿度与温度对压实膨胀土裂隙发育影响试验研究[J]. 岩土工程学报, 2020, 42(2): 260-268. DOI: 10.11779/CJGE202002007
引用本文: 刘观仕, 陈永贵, 曾宪云, 张贵保. 环境湿度与温度对压实膨胀土裂隙发育影响试验研究[J]. 岩土工程学报, 2020, 42(2): 260-268. DOI: 10.11779/CJGE202002007
LIU Guan-shi, CHEN Yong-gui, ZENG Xian-yun, ZHANG Gui-bao. Effects of ambient air humidity and temperature on crack development of compacted expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 260-268. DOI: 10.11779/CJGE202002007
Citation: LIU Guan-shi, CHEN Yong-gui, ZENG Xian-yun, ZHANG Gui-bao. Effects of ambient air humidity and temperature on crack development of compacted expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 260-268. DOI: 10.11779/CJGE202002007

环境湿度与温度对压实膨胀土裂隙发育影响试验研究  English Version

基金项目: 

国家自然科学基金项目 51279200

国家自然科学基金项目 41772279

长沙市科技计划项目 KQ1602037

湖南省教育厅科研项目 15A009

详细信息
    作者简介:

    刘观仕(1974— ),男,博士,副研究员,主要从事膨胀土工程特性方面的研究工作。E-mail:gsliu@whrsm.ac.cn

    通讯作者:

    陈永贵, E-mail:cyg@tongji.edu.cn

  • 中图分类号: TU43

Effects of ambient air humidity and temperature on crack development of compacted expansive soils

  • 摘要: 裂隙是影响膨胀土工程性质的重要因素。以南阳某高速公路膨胀土为对象,采用大尺寸压实膨胀土试样进行不同环境湿度与温度下的裂隙发育试验,通过数码相机摄影并基于自编程序进行土样表面图像的定量化分析,获得裂隙率、均宽及总长等典型特征参数,进而探讨环境湿度与温度对膨胀土裂隙发育规律的影响。结果表明:大尺寸土样裂隙发育特征相较环刀样和薄层饱和泥浆样更接近路基与边坡等工程实际;环境湿度越高,初期裂隙发展越慢,发育持续时间越长,后期裂隙特征统计参数反而越大;环境温度越高,初期裂隙发展越快,但裂隙回缩稳定速度也越快,后期裂隙特征统计参数反而越小;低湿度或高温度使土样表面易于产生更多肉眼不可见的微裂隙,是裂隙特征统计参数与理论分析相比偏小的重要原因,而高湿度与低温度则有利于收缩应力向深层土体传递,促使裂隙偏向数量更少但更宽和更深方向发展。
    Abstract: Cracks are one of the most significant influences on physical and mechanical properties of expansive soils. Some expansive soils, taken from Nanyang Expressway, are compacted to large-size samples and then dehydrated gradually in a closed greenhouse with various ambient air humidities and temperatures for desiccation tests, and a camera is utilized to record the development of cracks on the surfaces of samples. The captured images are disposed and then analyzed quantitatively to obtain typical characteristic parameters of surface cracks, such as crack ratio, average width and total length, for further exploration of crack developing laws. The results show that the cracks observed from the large big-size samples are more similar to those on the site such as embankments and slopes compared to the ring-knife-made or thin-saturated-slurry samples. The higher the ambient air humidity, the slower the cracks develop in the early stage, and the longer the developing time lasts, while the larger the statistical characteristic parameters of surface cracks in the later stage. The higher the ambient air temperature, the faster the cracks develop in the early stage, and the faster the cracks retract and become stable, while the smaller the statistical characteristic parameters of surface cracks in the later stage. Low ambient air humidity or high ambient air temperature makes it easy for the surface of soil samples to generate more invisible micro-fissures, which is an important reason for the small statistical characteristic parameters of cracks compared with the theoretical analysis. High ambient air humidity or low ambient air temperature may be beneficial to the transfer of shrinkage stress to deeper soil layer, and promote the development of cracks with fewer branches, larger width and deeper depth.
  • 图  1   土样试验箱及盖板

    Figure  1.   Box for compaction of soil samples

    图  2   油压测力千斤顶

    Figure  2.   Lifting jack for compaction

    图  3   人工气候试验箱

    Figure  3.   Artificial climate test box

    图  4   裂隙及二值化图像(T=30℃, RH=40%)

    Figure  4.   Cracks and binarization images

    图  5   不同环境湿度下的裂隙率变化

    Figure  5.   Change of crack ratios under different air humidities

    图  6   裂隙率与湿度关系

    Figure  6.   Relationship between crack ratio and relative moisture

    图  7   不同环境温度下的裂隙率变化

    Figure  7.   Change of crack ratios under different air temperatures

    图  8   裂隙率与温度关系

    Figure  8.   Relationship between crack ratio and temperature

    图  9   不同环境湿度下的裂隙均宽变化

    Figure  9.   Change of average crack widths under different air humidities

    图  10   不同环境温度下的裂隙均宽变化

    Figure  10.   Change of average crack widths under different air temperatures

    图  11   不同环境湿度下的裂隙总长变化(T=20℃,30℃,40℃)

    Figure  11.   Change of total crack lengths under different air humidities

    图  12   不同环境温度下的裂隙总长变化(RH=40%,60%,80%)

    Figure  12.   Change of total crack lengths under different air temperatures

    图  13   试验后土样照片

    Figure  13.   Post-test photo of soil sample

    图  14   试验后土样含水率(#9)

    Figure  14.   Distribution of water content along depth of post-test soil sample (No. 9)

    图  15   不同湿度下蒙脱土样收缩裂隙对比试验

    Figure  15.   Shrinkage comparison of montmorillonite samples under different air humidities

    表  1   试验终止时裂隙特征参数统计

    Table  1   Final statistical characteristic parameters of cracks

    编号温度/℃湿度/%裂隙率/%裂隙均宽/mm裂隙总长/mm
    #120409.784.163758
    #2206010.404.074089
    #3208012.114.734135
    #430406.883.423268
    #5306011.094.134290
    #6308011.804.444147
    #740406.763.013591
    #840609.962.925446
    #9408010.543.744100
    下载: 导出CSV
  • [1]

    TOLLENAARR N, VAN PAASSEN L A, JOMMI C. Small-scale evaporation tests on clay: influence of drying rate on clayey soil layer[J]. Canadian Geotechnical Journal, 2018, 55: 437-445. doi: 10.1139/cgj-2017-0061

    [2] 包承纲. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报, 2004, 26(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200401001.htm

    BAO Cheng-gang. Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 1-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200401001.htm

    [3] 程展林, 龚壁卫. 膨胀土边坡[M]. 北京: 科学出版社, 2015: 65-66.

    CHENG Zhan-lin, GONG Bi-wei. Expansive Soil Slope[M]. Beijing: Science Press, 2015: 65-66. (in Chinese)

    [4] 卢再华, 陈正汉. 膨胀土干湿循环胀缩裂隙演化的CT试验研究[J]. 岩土力学, 2002, 23(4): 417-422. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200204005.htm

    LU Zai-hua, CHEN Zheng-han. A CT study on the crack evolution of expansive soil during drying and wetting cycles[J]. Rock and Soil Mechanics, 2002, 23(4): 417-422. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200204005.htm

    [5] 袁俊平, 殷宗泽, 包承纲. 膨胀土裂隙的量化手段与度量指标研究[J]. 长江科学院院报, 2003, 20(6): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200306008.htm

    YUAN Jun-ping, YIN Zong-ze, BAO Cheng-gang. Quantitative description method & index for fissures in expansive soil[J]. Journal of Yangtze River Scientific Research Institute, 2003, 20(6): 27-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200306008.htm

    [6]

    GREVE A K, ACWORTH R I, KELLY B F J. Detection of subsurface soil cracks by vertical anisotropy profiles of apparent electrical resistivity[J]. Geophysics, 2010, 75(4): WA85-WA93. doi: 10.1190/1.3474590

    [7] 黎伟, 刘观仕, 汪为巍, 等. 湿干循环下压实膨胀土裂隙扩展规律研究[J]. 岩土工程学报, 2014, 36(7): 1302-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201407017.htm

    LI Wei, LIU Guan-shi, WANG Wei-wei, et al. Crack propagation law of compacted expansive soils under wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1302-1308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201407017.htm

    [8] 马佳, 陈善雄, 余飞, 等. 裂土裂隙演化过程试验研究[J]. 岩土力学, 2007, 28(10): 2230-2208. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200710037.htm

    MA Jia, CHEN Shan-xiong, YU Fei, etc. Experimental research on crack evolution process in fissured clay[J]. Rock and Soil Mechanics, 2007, 28(10): 2230-2208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200710037.htm

    [9] 李雄威, 冯欣, 张勇. 膨胀土裂隙的平面描述分析[J]. 水文地质工程地质, 2009, 36(1): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200901025.htm

    LI Xiong-wei, FENG Xin, ZHANG Yong. Depicting and analysis of expansive soil fissure in view of plane[J]. Hydrogeology and Engineering Geology, 2009, 36(1): 96-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200901025.htm

    [10] 张家俊, 龚壁卫, 胡波, 等. 干湿循环作用下膨胀土裂隙演化规律试验研究[J]. 岩土力学, 2011, 32(9): 2729-2734. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201109031.htm

    ZHANG Jia-jun, GONG Bi-wei, HU Bo, etc. Study of evolution law of fissures of expansive clay under wetting and drying cycles[J]. Rock and Soil Mechanics, 2011, 32(9): 2729-2734. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201109031.htm

    [11] 唐朝生, 崔玉军, TANG A M, 等. 膨胀土收缩开裂过程及其温度效应[J]. 岩土工程学报, 2012, 34(12): 2181-2187. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212007.htm

    TANG Chao-sheng, CUI Yu-jun, TANG ANH-MINH, et al. Shrinkage and desiccation cracking process of expansive soil and its temperature-dependent behavior[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2181-2187. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212007.htm

    [12] 刘春, 王宝军, 施斌, 等. 基于数字图像识别的岩土体裂隙形态参数分析方法[J]. 岩土工程学报, 2008, 30(9): 1383-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200809024.htm

    LIU Chun, WANG Bao-jun, SHI Bin, et al. Analytic method of morphological parameters of cracks for rock and soil based on image processing and recognition[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1383-1388. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200809024.htm

    [13] 黎伟, 刘观仕, 姚婷. 膨胀土裂隙图像处理及特征提取方法的改进[J]. 岩土力学, 2014, 35(12): 3620-3626. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412037.htm

    LI Wei, LIU Guan-shi, YAO Ting. Improvement of methods for crack image processing and crack feature extraction of expansive soil[J]. Rock and Soil Mechanics, 2014, 35(12): 3620-3626. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412037.htm

    [14] 唐朝生, 施斌, 刘春, 等. 黏性土在不同温度下干缩裂缝的发展规律及形态学定量分析[J]. 岩土工程学报, 2007, 29(5): 743-748. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200705018.htm

    TANG Chao-sheng, SHI Bin, LIU Chun, et al. Developing law and morphological analysis of shrinkage cracks of clay soil at different temperature[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 743-748. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200705018.htm

    [15] 曹玲, 王志俭, 张振华. 降雨-蒸发条件下膨胀土裂隙演化特征试验研究[J]. 岩石力学与工程学报, 2016, 35(2): 413-421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602023.htm

    CAO Ling, WANG Zhi-jian, ZHANG Zhen-hua. Experimental research of cracking process of expansive soil under rainfall infiltration and evaporation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 413-421. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602023.htm

    [16] 许锡昌, 周伟, 陈善雄. 南阳重塑中膨胀土脱湿全过程裂隙开裂特征及影响因素分析[J]. 岩土力学, 2015, 36(9): 2569-2576. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509018.htm

    XU Xi-chang, ZHOU Wei, CHEN Shan-xiong. Study of cracking characteristics and influencing factors for remolded Nanyang expansive soil in dehydration process[J]. Rock and Soil Mechanics, 2015, 36(9): 2569-2576. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509018.htm

    [17] 王军, 龚壁卫, 张家俊, 等. 膨胀岩裂隙发育的现场观测及描述方法研究[J]. 长江科学院院报, 2010, 27(9): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201009018.htm

    WANG Jun, GONG Bi-wei, ZHANG Jia-jun, et al. Field observation and description method of cracks development on expansive rock[J]. Journal of Yangtze River Scientific Research Institute, 2010, 27(9): 74-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201009018.htm

    [18] 夏冬生, 刘清秉, 项伟, 等. 蒙脱石含量对黏土表面干缩裂隙影响试验研究[J]. 长江科学院院报, 2016, 33(9): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201609016.htm

    XIA Dong-sheng, LIU Qing-bing, XIANG Wei, et al. Deformation properties of saturated dispersive clay[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(9): 83-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201609016.htm

    [19]

    NAHLAWIH , KODIKARAJK . Laboratory experiments on desiccation cracking of thin soil layers[J]. Geotechnical and Geological Engineering, 2006, 24: 1641-1664.

    [20]

    TOLLENAAR R N, VAN PAASSEN L A, JOMMI C. Observations on the desiccation and cracking of clay layers[J]. Engineering Geology, 2017, 230: 23-31.

    [21]

    VELDE B. Structure of surface cracks in soil and muds[J]. Geoderma, 1999, 93: 101-124.

    [22]

    SUSANGA C, JAYANTHA K, BENJAMIN S. Salient factors controlling desiccation cracking of clay in laboratory experiments[J]. Géotechnique, 2013, 63(1): 18-29.

    [23] 申科, 朱潇钰, 张英莹. 不同温度下膨胀土裂隙演化规律研究[J]. 水电能源科学, 2017, 35(3): 116-118. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201703030.htm

    SHEN Ke, ZHU Xiao-yu, ZHANG Ying-ying. Study on crack evolution law of expansive soil under different temperatures[J]. Water Resources and Power, 2017, 35(3): 116-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201703030.htm

    [24]

    TANG Chao-sheng, SHI Bin, LIU Chun, et al. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils[J]. Engineering Geology, 2008, 101: 204-217.

    [25] 曾宪云, 刘观仕, 陈永贵, 等. 摄影图像应用于膨胀土裂隙特征分析中的几个问题[J]. 土工基础, 2018, 32(1): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201801012.htm

    ZENG Xian-yun, LIU Guan-shi, CHEN Yong-gui, et al. Some considerations of applying digital images in the expansive soil crack analyses[J]. Soil Engineering and Foundation, 2018, 32(1): 46-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201801012.htm

    [26] 张华. 非饱和渗流研究及其在工程中的应用[D]. 武汉: 中国科学院武汉岩土力学研究所, 2002.

    ZHANG Hua. Research on Unsaturated Seepage and Its Application to Engineering[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2002. (in Chinese)

    [27] 殷宗泽, 袁俊平, 韦杰, 等. 论裂隙对膨胀土边坡稳定的影响[J]. 岩土工程学报, 2012, 34(12): 2155-2161. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212003.htm

    YIN Zong-ze, YUAN Jun-ping, WEI Jie, et al. Influences of fissures on slope stability of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2155-2161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212003.htm

    [28] 曾浩, 唐朝生, 刘昌黎, 等. 膨胀土干燥过程中收缩应力的测试与分析[J]. 岩土工程学报, 2019, 41(4): 717-725. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904020.htm

    ZENG Hao, TANG Chao-sheng, LIU Chang-Li, et al. Measurement and analysis of shrinkage stress of expansive soils duringdrying process[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 717-725. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904020.htm

    [29]

    WILSON H W, FREDLUND D G, BARBOUR S L. Coupled soil-atmosphere modeling for soil evaporation[J]. Canadian Geotechnical Journal, 1994, 31: 141-152.

    [30]

    TANG C S, CUI Y J, TANG A M, et al. Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils[J]. Engineering Geology, 2010, 114: 261-266.

  • 期刊类型引用(2)

    1. 张小利,张四化,李明宇,刘涛,钱宇奔. 复合地基桩端位置变化对挡墙附加土压力的影响规律模型试验研究. 工程勘察. 2023(06): 7-12+29 . 百度学术
    2. 刘华,刘志,张文龙,胡亚洲,刘人菩,谭茜元,谢楠,姜海波. 旋喷加固淤泥地层隧道荷载作用模式研究. 铁道标准设计. 2023(12): 143-149 . 百度学术

    其他类型引用(4)

图(15)  /  表(1)
计量
  • 文章访问数:  358
  • HTML全文浏览量:  37
  • PDF下载量:  188
  • 被引次数: 6
出版历程
  • 收稿日期:  2018-06-29
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-01-31

目录

    /

    返回文章
    返回